Population Ecology

, Volume 49, Issue 1, pp 15–27 | Cite as

Interactions between ants and aphidophagous and coccidophagous ladybirds

  • Michael E. N. Majerus
  • John J. Sloggett
  • Jean-François Godeau
  • Jean-Louis Hemptinne
Review Special feature: predatory ladybirds: individuals, populations, and interactions

Abstract

Aphidophagous and coccidophagous coccinellids come into conflict with homopteran-tending ants for access to food. Antagonistic interactions between coccinellids and ants may be competitive or non-competitive. Competitive interactions occur when coccinellids attack aphids or coccids that are being tended by ants for honeydew. Non-competitive interactions include all interactions away from ant-tended homopteran colonies. We here review observations and studies of such interactions. We note that most competitive interactions occur at times when untended aphids/coccids are scarce. We describe the chemical and physical defences that coccinellids use against ant aggression and consider whether these have evolved as general anti-predator deterrents or specifically in response to ants. Myrmecophilous coccinellids are then considered, with particular focus on the two most studied species, Coccinella magnifica and Platynaspis luteorubra. We note that the myrmecophily of the two species has the same adaptive rationale—to enable the ladybirds to prey on ant-tended aphids at times of aphid scarcity—but that it is based on different traits to facilitate life with ants. Finally, we consider the role of ants in the evolution of habitat specialisation in some coccinellids.

Keywords

Coccinellidae Myrmecophily Aphids Coccids Optimal forage theory Chemical defence 

References

  1. Addicott JF (1979) A multispecies aphid-ant association: density dependence and species–specific effects. Can J Zool 57:558–569CrossRefGoogle Scholar
  2. Agarwala BK Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol Entomol 17:303–309Google Scholar
  3. Attygalle AB, McCormick KD, Blankespoor CL, Eisner T, Meinwald J (1993a) Azamacrolides: a family of alkaloids from the pupal defensive secretion of a ladybird beetle (Epilachna varivestis). Proc Natl Acad Sci USA 90:5204–5208Google Scholar
  4. Attygalle AB, Xu S-C, McCormick KD, Meinwald J (1993b) Alkaloids of the Mexican bean beetle, Epilachna varivestis (Coccinellidae). Tetrahedron 49:9333–9342Google Scholar
  5. Bach CE (1991) Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia 87:233–239Google Scholar
  6. Banks CJ (1958) Effects of the ant Lasius niger (L.), on the behaviour and reproduction of the black bean aphid, Aphis fabae Scop. Bull Entomol Res 49:701–714Google Scholar
  7. Banks CJ (1962) Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae (Scop.) on bean plants. Ann Appl Biol 50:669–679CrossRefGoogle Scholar
  8. Banks CJ, Macaulay EDM (1967) Effects of Aphis fabae Scop. And of its attendant ants and insect predators on yields of field beans (Vicia faba L.). Ann Appl Biol 60:445–453Google Scholar
  9. Bartlett BR (1961) The influence of ants upon parasites, predators and scale insects. Ann Entomol Soc Am 54:543–551Google Scholar
  10. Berti N, Boulard M, Duverger C (1983) Fourmis et Coccinelles: revue bibliographique et observations nouvelles. Bull Soc Entomol Fr 88:271–275Google Scholar
  11. Bhatkar AP (1982) Orientation and defense of ladybeetles (Coleophera: Coccinellidae), following ant trail in search of aphids. Folia Entomol Mex 53:75–85Google Scholar
  12. Bradley GA (1973) Effect of Formica obscuripes (Hymenoptera: Formicidae) on the predator-prey relationship between Hyperaspis congressis (Coleoptera: Coccinellidae) and Toumeyella numismaticum (Homoptera: Coccidae). Can Entomol 105:1113–1118Google Scholar
  13. Bradley GA, Hinks JD (1968) Ants, aphids and jack pine in Manitoba. Can Entomol 100:40–50CrossRefGoogle Scholar
  14. Brakefield PM (1985) Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol J Linn Soc 26:243–267Google Scholar
  15. Bristow CM (1984) Differential benefits from ant attendance to two species of Homoptera on New York Ironweed. J Anim Ecol 53:715–726Google Scholar
  16. Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257Google Scholar
  17. Chapin EA (1966) A new species of myrmecophilous Coccinellidae, with notes on the other Hyperaspini (Coleoptera). Psyche 73:278–283Google Scholar
  18. Corbara B, Dejean A, Cerdan P (1999) Une coccinelle myrmecophile associée à la fourmi arboricole Dolichoderus bidens (Dolichoderinae). Actes Coll Ins Soc 12:171–179Google Scholar
  19. Daloze D, Braekman J-C, Pasteels JM (1995) Ladybird defence alkaloids: structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 5/6:173–183Google Scholar
  20. DeBach P, Fleschner CA, Dietrick EJ (1951) A biological check methoid for evaluating the effectiveness of entomophagous insects. J Econ Entomol 44:763–766Google Scholar
  21. Dechene R (1970) Studies of some behavioural patterns of Iridomyrmex humilis Mayr (Formicidae, Dolichoderinae). Wasmann J Biol 28:175–184Google Scholar
  22. Disney RHL, Majerus MEN, Walpole M (1994) Phoridea (Diptera) parasitising Coccinellidae (Coleoptera). Entomologist 113:28–42Google Scholar
  23. Dixon AFG (1970) Quality and availability of food for a sycamore aphid population. Symp Br Ecol Soc 10:271–287Google Scholar
  24. Dixon AFG (1998) Aphid Ecology, 2nd edition. Blackie, GlasgowGoogle Scholar
  25. Dixon AGF (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, CambridgeGoogle Scholar
  26. Donisthorpe HStJK (1919–1920) The myrmecophilous ladybird Coccinella distincta, Fald., its life history and association with ants. Entomol Rec J Var 32:1–3Google Scholar
  27. Eisner T, Eisner M (1992) Operation and defensive role of “gin traps” in a coccinellid pupa (Cycloneda sanguinea). Psyche 99:265–274Google Scholar
  28. Eisner T, Hicks K, Eisner M (1978) “Wolf-in-sheep’s-clothing” strategy of a predaceous insect larva. Science 199:790–794PubMedGoogle Scholar
  29. Eisner T, Goetz M, Anaeshansley D, Ferstandig-Arnold G, Meinwald J (1986) Defensive alkaloid in the blood of the Mexican bean beetle (Epilachna varivestis). Experimentia 42:204–207Google Scholar
  30. El-Ziady S (1960) Further effects of Lasius niger L. on Aphis fabae Scopoli. Proc R Entomol Soc Lond A 35:30–38Google Scholar
  31. El-Ziady S, Kennedy JS (1956) Beneficial effects of the common garden ant Lasius niger L., on the black bean aphid, Aphis fabae Scopoli. Proc R Entomol Soc Lond A 31:61–65Google Scholar
  32. Godeau J-F (1997) Adaptations à la cohabitation avec des fourmis: le cas de Coccinella magnifica Redtenbacher. Mémoire de D.E.A., Faculté des Sciences Agronomiques de Gembloux, 42 ppGoogle Scholar
  33. Godeau J-F (2000) Coccinelles amies des fourmis. 2/2/ Groupe de Travail Coccinulla. Feuille de Contact 2:10–15Google Scholar
  34. Godeau J-F, Hemptinne J-L, Verhaeghe J-C (2003) Ant trail: a highway for Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae). In Soares AO, Ventura MA, Garcia V, Hemptinne J-L (eds) Proceedings of the 8th International Symposium on Ecology of Aphidophaga: Biology, Ecology and Behaviour of Aphidophagous Insects. Arquipélago: Life and Marine Sciences, Supplement 5 pp 79–83Google Scholar
  35. Gordon RD (1985) The Coccinellidae (Coleoptera) of America North of Mexico. J NY Entomol Soc 93:1–912Google Scholar
  36. Happ GM, Eisner T (1961) Hemorrage in a Coccinellid beetle and its repellent effects on ants. Science 134:329–331PubMedGoogle Scholar
  37. Harris RHTP (1921) A note on Ortalia pallens Muls. S Afr J Sci 17:170–171Google Scholar
  38. Hattingh V, Samways MJ (1992) Prey choice and substitution in Chilocorus spp. (Coleoptera: Coccinellidae). Bull Entomol Res 82:327–334Google Scholar
  39. Hays SB, Hays KL (1958) Food habits of Solenopsis saevissima richteri Forel. J Ecol Entomol 52:455–457Google Scholar
  40. Hemptinne J-L, Magro A, Majerus MEN (2005) Les Coccinelles. Delachaux et Niestlé, ParisGoogle Scholar
  41. Hodek I (1996) Food Relationships. In: Hodek I, Honek A (eds) Ecology of Coccinellidae. Kluwer, Dortrecht, pp 143–238Google Scholar
  42. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New YorkGoogle Scholar
  43. Holloway GJ, de Jong PW, Brakefield PM, de Vos H (1991) Chemical defense in ladybird beetles (Coccinellidae). I. Distribution of coccinelline and individual variation in defence in 7-spot ladybirds (Coccinella septempunctata). Chemoecology 2:7–14Google Scholar
  44. Holloway GJ, de Jong PW, Ottenheim M (1993) The genetics and cost of chemical defence in the 2-spot ladybird (Adalia bipunctata L.). Evolution 47:1229–1239Google Scholar
  45. Itioka T, Inoue T (1996) The role of predators and attendant ants in the regulation of a population of the citrus mealybug Pseudococcus citriculus in a Satsuma orange orchard. Appl Entomol Zool 31:195–202Google Scholar
  46. Jeffries MJ, Lawton JH (19849 Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286Google Scholar
  47. Jiggins C, Majerus MEN, Gough U (1993) Ant defence of colonies of Aphis fabae Scopoli (Hemiptera: Aphididae), against predation by ladybirds. Br J Entomol Nat Hist 6:129–138Google Scholar
  48. Jones TH, Blum MS (1983) Arthropod alkaloids: distribution, functions, and chemistry. In: Pelletier SW (ed) Alkaloids vol. 1, Chemical and biological perspectives. Wiley, New York pp 33–84Google Scholar
  49. de Jong PW, Holloway GJ, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (Adalia bipunctata). Chemoecology 2:15–19Google Scholar
  50. Jutsum AR, Cherrett JM, Fisher M (1981) Interactions between the fauna of citrus trees in Trinidad and the ants Atta cephalotes and Azteca sp. J Appl Ecol 18:187–195Google Scholar
  51. Kovár I (1996) Phylogeny. In: Hodek I, Honek A (eds) Ecology of Coccinellidae. Kluwer, Dortrecht pp 19–31Google Scholar
  52. Liepert C, Dettner K (1996) Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J Chem Ecol 22:695–707Google Scholar
  53. MacKay WP (1983) Beetles associated with the harvester ants, Pogonomyrmex montanus, P. subnitidus and P. rugosus (Hymenoptera: Formicidae). Coleopt Bull 37:239–246Google Scholar
  54. Mahdi T, Whittaker JB (1993) Do birch trees (Betula pendula) grow better if foraged by wood ants? J Anim Ecol 62:101–116Google Scholar
  55. Majerus MEN (1989) Coccinella magnifica (Redtenbacher)—a myrmecophilous ladybird. Br J Entomol Nat Hist 2:97–106Google Scholar
  56. Majerus MEN (1993) Notes on the inheritance of a scarce form of the striped ladybird, Myzia oblongoguttata Linnaeus (Coleoptera: Coccinellidae). Entomol Rec J Var 105:271–278Google Scholar
  57. Majerus MEN (1994) Ladybirds. No. 81, New Naturalist Series. Harper Collins, LondonGoogle Scholar
  58. Majerus MEN, Majerus TMO (1997) Predation of ladybirds by birds in the wild. Entomol Mon Mag 133:55–61Google Scholar
  59. Mann WM (1911) On some northwestern ants and their guests. Psyche 18:102–109Google Scholar
  60. Mariau D, Julia JF (1977) Nouvelles rechérches sur la cochenille du cocotier Aspidotus destructor (Sign). Oléagineux 32:217–224Google Scholar
  61. Marples NM (1993) Is the alkaloid in 2 spot ladybirds (Adalia bipunctata) a defence against ant predation? Chemoecology 4:29–32Google Scholar
  62. Marples NM, Brakefield PM, Cowie RJ (1989) Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol Entomol 14:79–84Google Scholar
  63. McLain DK (1980) Relationships among ants, aphids, and coccinellids on wild lettuce. J Georgia Entomol Soc 15:417–418Google Scholar
  64. Montgomery HWJr, Goodrich MA (2002) The Brachiacantha (Coleoptera: Coccinelllidae) of Illinois. Trans Ill State Acad Sci 95:111–130Google Scholar
  65. Moore BP, Brown WV, Rothschild M (1990) Methylalkylpyrazines in apoosematic insects, their hostplants and mimics. Chemoecology 1:43–51Google Scholar
  66. Morgan CL (1896) Habit and instinct. LondonGoogle Scholar
  67. Muggleton J (1978) Selection against the melanic morphs of Adalia bipunctata (two-spot ladybird): a review and some new data. Heredity 40:269–280Google Scholar
  68. Oczenascheck C (1997) Chemische Ekologie der Entwicklungsstadien des Marienkaefers Platynaspis luteorubra Goeze. Unpublished diploma thesis, University of BayreuthGoogle Scholar
  69. Orivel J, Servigne P, Cerdan Ph, Dejean A, Corbara B (2004) The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies. Naturwissenschaften 91:97–100PubMedGoogle Scholar
  70. Pasteels JM, Deroe C, Tursch B, Brakeman JC, Daloze D, Hootele C (1973) Distribution et activites des alcaloides défensifs des Coccinellidae. J Insect Physiol 19:1771–1784Google Scholar
  71. Pontin AJ (1959) Some records of predators and parasites adapted to attack aphids attended by ants. Entomol Mon Mag 95:154–155Google Scholar
  72. Pope RD (1979) Wax production by coccinellid larvae (Coleoptera). Syst Entomol 4:171–196Google Scholar
  73. Proksch P, Wite L, Wray V, Hartmann T (1993) Ontogenic variation of defensive alkaloids in the Mexican bean beetle Epilachna varivestis (Coleoptera: Coccinellidae). Entomol Gener 18:1–7Google Scholar
  74. Radford P, Attygalle AB, Meinwald J, Smedley SR, Eisner T (1997) Pyrrolidinooxazolidine alkaloids from two species of ladybird beetles. J Nat Prod 60:755–759PubMedGoogle Scholar
  75. Rathcke B, Hamrum CL, Glass AW (1967) Observations of the interrelationships among ants and aphid predators. Mich Entomol 1:169–173Google Scholar
  76. Reimer NJ, Cope M-L, Yasuda G (1993) Interference of Pheidole megacephala (Hymenoptera: Formicidae) with biological control of Coccus viridis (Homoptera: Coccidae) in coffee. Environ Entomol 22:483–488Google Scholar
  77. Richards AM (1980) Defence adaptations and behaviour in Scymnodes lividigaster (Coleoptera: Coccinellidae). J Zool Lond 192:157–168CrossRefGoogle Scholar
  78. Richards AM (1985) Biology and defensive adaptations in Rodatus major (Coleoptera: Coccinellidae) and its prey, Monophlebus pilosior (Hemiptera: Margarodidae). J Zool Lond A 205:287–295CrossRefGoogle Scholar
  79. Rosen D (1990) (ed) Armoured scale insects: their biology, natural enemies and control. vol B Elsevier, AmsterdamGoogle Scholar
  80. Rothschild M, Reichstein T (1976) Some problems associated with the storage of cardiac glycosides by insects. Nova Acta Leopoldina Supplement 7:507–550Google Scholar
  81. Schröder FC, Farmer JJ, Attygalle AB, Smedley SR, Eisner T, Meinwald J (1998) Combinatorial chemistry in insects: a library of defensive macrocyclic polyamines. Science 281:428–431PubMedGoogle Scholar
  82. Seibert TF (1992) Mutualistic interactions of the aphid Lachnus allegheniensis (Homoptera: Aphididae) and its tending ant Formica obscuripes (Hymenoptera: Formicidae). Ann Entomol Soc Am 85:173–178Google Scholar
  83. Shi XW, Attygalle AB, Meinwald J (1997) Defense mechanisms of arthropods. 149. Synthesis and absolute configuration of two defensive alkaloids from the Mexican bean beetle, Epilachna varivestis. Tetrahedron Lett 38:6479–6482Google Scholar
  84. Silvestri F 1903 Contribuzioni alla conoscenza dei Mirmecophili, I. Osservazioni su alcuni mirmecophili dei dintorni di Portici. Ann Mus Zool R Univ Napoli 1:1–5Google Scholar
  85. Sloggett JJ (1998) Interactions between coccinellids (Coleoptera) and ants (Hymenoptera: Formicidae), and the evolution of myrmecophily in Coccinella magnifica Redtenbacher. Unpublished PhD thesis, University of CambridgeGoogle Scholar
  86. Sloggett JJ (2005) Are we studying too few taxa? Insights from aphidophagous ladybird beetles (Coleoptera: Coccinellidae). Eur J Entomol 102:391–398Google Scholar
  87. Sloggett JJ, Majerus MEN (2000a) Aphid-mediated coexistence of ladybirds (Coleoptera: Coccinellidae) and the wood ant Formica rufa: seasonal effects, interspecific variability and the evolution of a coccinellid myrmecophile. Oikos 89:345–359Google Scholar
  88. Sloggett JJ, Majerus MEN (2000b) Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): an evolutionary perspective. Biol J Linn Soc 70:63–88Google Scholar
  89. Sloggett JJ, Majerus MEN (2003) Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). II. Larval behaviour, and ladybird oviposition location. Eur J Entomol 100:337–344Google Scholar
  90. Sloggett JJ, Wood RA, Majerus MEN (1998) Adaptations of Coccinella magnifica Redtenbacher, a myrmecophilous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioral adaptation, its ecological context and evolution. J Insect Behav 11:889–904Google Scholar
  91. Sloggett JJ, Völkl W, Schulze W, von der Schulenberg JH, Majerus MEN (2002) The ant-associations and diet of the ladybird Coccinella magnifica (Coleoptera: Coccinellidae). Eur J Entomol 99:565–569Google Scholar
  92. Sloggett JJ, Webberley KM, Majerus MEN (2004) Low parasitoid success on a myrmecophilous host is maintained in the absence of ants. Ecol Entomol 29:123–127Google Scholar
  93. Smith JB (1886) Ant’s nests and their inhabitants. Am Nat 20:679–687Google Scholar
  94. Southwood TRE (1977) Ecological methods: with particular reference to the study of insect populations, 2nd Edn. Chapman & Hall, LondonGoogle Scholar
  95. Stäger R (1929) Warum werden geweisse Insekten von den Ameisen nicht verzehrt? Z Insbiol 24:227–230Google Scholar
  96. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  97. Sterling WL, Jones D, Dean DA (1979) Failure of the red imported fire ant too reduce entomophagous insect and spider abundance in a cotton agroecosystem. Environ Entomol 8:976–981Google Scholar
  98. Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, OxfordGoogle Scholar
  99. Tursch B, Braekman JC, Daloze D (1976) Arthropod alkaloids. Experientia 32:401–407Google Scholar
  100. Vinson SB, Scarborough TA (1989) Impact of the imported fire ant on laboratory populations of cotton aphid (Aphis gossypii) predators. Fla Entomol 72:107–111Google Scholar
  101. Völkl W (1995) Behavioural and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attending resources (Coleoptera: Coccinellidae). J Insect Behav 8:653–670Google Scholar
  102. Völkl W (1997) Interactions between ants and aphid parasitoids: Patterns and consequences for resource utilization. Ecol Stud 130:225–240Google Scholar
  103. Völkl W, Vohland K (1996) Wax covers in larvae of two Scymnus species: do they enhance coccinellid larval survival? Oecologia 107:498–503Google Scholar
  104. Wasmann E (1894) Kritisches Verzeichniss der Myrmekophilen und Termitophilen Arthropoden. Verlag von Felix L. Dames, BerlinGoogle Scholar
  105. Wasmann E (1912) Neue Beiträge zur Kenntnis der Termitophilen und Myrmecophilen. Zeits Wissens Zool 101:70–115Google Scholar
  106. Way MJ (1954) Studies on the association of the ant Oecophylla longinoda (Latr.) with the scale insect, Saissetia zanzibarensis (Williams). Bull Entomol Res 45:113–134CrossRefGoogle Scholar
  107. Way MJ (1963) Mutualism between ants and honeydew producing Homoptera. Annu Rev Entomol 8:307–344Google Scholar
  108. Wheeler WM (1911) An ant-nest coccinellid [Brachyancantha quadripunctata (Mels.)]. J NY Entomol Soc 19:169–174Google Scholar
  109. Wilson NL, Oliver AD (1969) Food habits of the imported fire ant in pasture and pine forest areas in southeastern Louisiana. J Econ Entomol 62:1268–1271Google Scholar
  110. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of alkaloids from plants via aphids to ladybirds. Naturwissenschaften 77:540–543Google Scholar

Copyright information

© The Society of Population Ecology and Springer 2006

Authors and Affiliations

  • Michael E. N. Majerus
    • 1
  • John J. Sloggett
    • 2
  • Jean-François Godeau
    • 3
  • Jean-Louis Hemptinne
    • 4
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK
  2. 2.Department of EntomologyUniversity of KentuckyLexingtonUSA
  3. 3.Biodiversity Research CentreUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Evolution et Diversité Biologique, Ecole Nationale de Formation AgronomiqueUMR 5174 CNRS/Université Toulouse III/ENFACastanet-Tolosan CedexFrance

Personalised recommendations