Population Ecology

, Volume 47, Issue 2, pp 127–136 | Cite as

Factors affecting the proportion of sterile soldiers in growing aphid colonies

Original Article


The proportion of sterile soldiers in an aphid colony is positively correlated with colony size. Assuming logistic growth of the aphid colony, Aoki and Kurosu (Insect Soc 50:256–261, 2003) presented an inequality that determines, for any colony size, whether a soldier or a reproductive will be added to the colony. To put it in words, if the marginal defensive efficacy of a soldier, multiplied by the number of reproductives, is larger than the mean productivity of reproductives without defense by that soldier, the soldier will be produced; if not, a reproductive will be produced. Based on Aoki and Kurosu’s inequality, we carried out simulations to determine whether the proportion of soldiers increased with colony size. Given a constant level of depredation per aphid and a constant number of predators, proportion of soldiers continued to increase with colony size unless a single soldier was very effective or unless carrying capacity was very large. Given a constant number of nongluttonous predators and a decreasing level of depredation per aphid, proportion of soldiers soon began to decrease after a peak. However, given an increasing number of nongluttonous predators to keep a constant level of depredation per aphid, proportion of soldiers again continued to increase. These results confirmed the argument that the proportion of soldiers can increase with colony size under a wide range of realistic assumptions.


Carrying capacity Logistic model Optimal defense Pseudoregma Simulation 


  1. Aoki S (1977) Colophina clematis (Homoptera, Pemphigidae), an aphid species with “soldiers.” Kontyû 45:276–282Google Scholar
  2. Aoki S (1983) A new Taiwanese species of Colophina (Homoptera, Aphidoidea) producing large soldiers. Kontyû 51:282–288Google Scholar
  3. Aoki S (2003) Soldiers, altruistic dispersal and its consequences for aphid societies. In: Kikuchi T, Azuma N, Higashi S (eds) Genes, behavior and evolution of social insects. Hokkaido University Press, Sapporo, pp 201–215Google Scholar
  4. Aoki S, Kurosu U (2003) Logistic model for soldier production in aphids. Insect Soc 50:256–261. DOI 10.1007/s00040-003-0675-3Google Scholar
  5. Aoki S, Kurosu U (2004) How many soldiers are optimal for an aphid colony? J Theor Biol 230:313–317. DOI 10.1016/j.jtbi.2004.05.019PubMedMathSciNetGoogle Scholar
  6. Aoki S, Yamane S, Kiuchi M (1977) On the biters of Astegopteryx styracicola (Homoptera, Aphidoidea). Kontyû 45:563–570Google Scholar
  7. Aoki S, Akimoto S, Yamane S (1981) Observations on Pseudoregma alexanderi (Homoptera, Pemphigidae), an aphid species producing pseudoscorpion-like soldiers on bamboos. Kontyû 49:355–366Google Scholar
  8. Arakaki N, Hattori M (1998) Differences in the quality and quantity of honeydew from first instar soldier and ordinary morph nymphs of the bamboo aphid, Pseudoregma koshunensis (Takahashi) (Homoptera: Aphidoidea). Appl Entomol Zool 33:357–361Google Scholar
  9. Fukatsu T, Ishikawa H (1992) Soldier and male of a eusocial aphid Colophina arma lack endosymbiont: implications for physiological and evolutionary interaction between host and symbiont. J Insect Physiol 38:1033–1042Google Scholar
  10. Ijichi N, Shibao H, Miura T, Matsumoto T, Fukatsu T (2004) Soldier differentiation during embryogenesis of a social aphid, Pseudoregma bambucicola. Entomol Sci 7:143–155. DOI 10.1111/j.1479-8298.2004.00061.xGoogle Scholar
  11. Itô Y, Tanaka S, Yukawa J, Tsuji K (1995) Factors affecting the proportion of soldiers in eusocial bamboo aphid, Pseudoregma bambucicola, colonies. Ethol Ecol Evol 7:335–345Google Scholar
  12. Kurosu U, Aoki S (1998) Long-lasting galls of Ceratoglyphina styracicola, a host-alternating subtropical aphid species. In: Nieto Nafría JM, Dixon AFG (eds) Aphids in natural and managed ecosystems. Universidad de León, Secretariado de Publicaciones, pp 227–234Google Scholar
  13. Kurosu U, Aoki S (2003) Tuberaphis owadai (Homoptera), a new aphid species forming a large gall on Styrax tonkinensis in northern Vietnam. Entomol Sci 6:89–96. DOI 10.1046/j.1343-8786.2003.00012.xGoogle Scholar
  14. Kutsukake M, Shibao H, Nikoh N, Morioka M, Tamura T, Hoshino T, Ohgiya S, Fukatsu T (2004) Venomous protease of aphid soldier for colony defense. Proc Natl Acad Sci USA 101:11338-11343. DOI 10.1073/pnas.0402462101PubMedGoogle Scholar
  15. Ôhara K (1985) Observations on the oviposition behaviour of Metasyrphus confrater (Diptera, Syrphidae) and the defensive behaviour of soldiers of Pseudoregma bambucicola (Homoptera, Pemphigidae). Esakia 23:99–105Google Scholar
  16. Sakata K, Itô Y, Yukawa J, Yamane S (1991) Ratio of sterile soldiers in the bamboo aphid, Pseudoregma bambucicola (Homoptera: Pemphigidae), colonies in relation to social and habitat conditions. Appl Entomol Zool 26:463–468Google Scholar
  17. Schütze M, Maschwitz U (1991) Enemy recognition and defence within trophobiotic associations with ants by the soldier caste of Pseudoregma sundanica (Homoptera: Aphidoidea). Entomol Gen 16:1–12Google Scholar
  18. Schütze M, Maschwitz U (1992) Investigations on the trophobiosis of Pseudoregma sundanica (Homoptera: Aphidoidea: Hormaphididae), a Southeast-Asian aphid with sterile soldiers. Zool Beitr N F 34:337–347Google Scholar
  19. Shibao H (1998) Social structure and the defensive role of soldiers in a eusocial bamboo aphid, Pseudoregma bambucicola (Homoptera: Aphididae): a test of the defence-optimization hypothesis. Res Popul Ecol 40:325–333Google Scholar
  20. Shibao H (1999) Reproductive schedule and factors affecting soldier production in the eusocial bamboo aphid Pseudoregma bambucicola (Homoptera, Aphididae). Insect Soc 46:378–386Google Scholar
  21. Shibao H, Lee J-M, Kutsukake M, Fukatsu T (2003a) Aphid soldier differentiation: density acts on both embryos and newborn nymphs. Naturwissenschaften 90:501–504. DOI 10.1007/s00114-003-0474-8PubMedGoogle Scholar
  22. Shibao H, Kutsukake M, Fukatsu T (2003b) Density triggers soldier production in a social aphid. Proc R Soc Lond B 271(Suppl):S71–S74. DOI 10.1098/rsbl.2003.0089Google Scholar
  23. Shibao H, Kutsukake M, Fukatsu T (2004) The proximate cue of density-dependent soldier production in a social aphid. J Insect Physiol 50:143–147. DOI 10.1016/j.jinsphys.2003.10.006PubMedGoogle Scholar
  24. Shingleton AW, Foster WA (2000) Ant tending influences soldier production in a social aphid. Proc R Soc Lond B 267:1863–1868Google Scholar
  25. Shingleton AW, Foster WA (2001) Behaviour, morphology and the division of labour in two soldier-producing aphids. Anim Behav 62:671–679. DOI 10.1006/anbe.2001.1796Google Scholar
  26. Stern DL (1998) Phylogeny of the tribe Cerataphidini (Homoptera) and the evolution of the horned soldier aphids. Evolution 52:155–165Google Scholar
  27. Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Biol Rev Camb Philos Soc 71:27–79PubMedGoogle Scholar
  28. Sunose T, Yamane S, Tsuda T, Takasu K (1991) What do the soldiers of Pseudoregma bambucicola (Homoptera, Aphidoidea) defend? Jpn J Entomol 59:141–148Google Scholar
  29. Tanaka S, Itô Y (1994) Reversal of caste production schedule in a eusocial aphid, Pseudoregma koshunensis. Naturwissenschaften 81:411–413Google Scholar
  30. Tanaka S, Itô Y (1995) Interrelationships between the eusocial aphid, Pseudoregma bambucicola, and its syrphid predator, Eupeodes confrater. Jpn J Entomol 63:221–228Google Scholar

Copyright information

© The Society of Population Ecology and Springer-Verlag Tokyo 2005

Authors and Affiliations

  1. 1.Faculty of EconomicsRissho UniversityJapan

Personalised recommendations