Population Ecology

, Volume 46, Issue 3, pp 243–251 | Cite as

Chance and adaptation in the evolution of island bumblebee behaviour

Review Special Feature: Current topics in pollination ecology

Abstract

We used a population biological approach to assist our understanding of the evolution of behaviour, with island bumblebees as our model system. The widespread European species Bombus terrestris occurs on all major Mediterranean, and some Atlantic islands. Bees from different populations differ in a variety of behavioural traits, including floral colour preferences, flower detection, and learning behaviour. We attempted to correlate these behavioural differences with each population’s environment, but could not find straightforward adaptive explanations. We also performed reciprocal transplant studies to compare nectar foraging performance of bees from three different populations, but found that non-native bees consistently outcompeted native bees. Thus, we consider genetic drift, exaptation, and pleiotropy as possible alternative explanations to a strictly adaptive explanation for between population behavioural differences in bumblebees.

Keywords

Genetic drift Colour vision Learning Body size Flight speed Flower colour 

References

  1. Adkison MD (1995) Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment. Can J Fish Aquat Sci 52:2762–2777Google Scholar
  2. Banschbach VS (1994) Colour association influences honey bee choice between sucrose concentrations. J Comp Physiol A 175:107–114Google Scholar
  3. Barton NH (1984) Genetic revolutions, founder effects and speciation. Annu Rev Ecol Syst 15:133–164CrossRefGoogle Scholar
  4. Barton NH (1998) Natural selection and random genetic drift as causes of evolution on islands. In: Grant PR (ed) Evolution on islands. Oxford University Press, Oxford, pp 102–123Google Scholar
  5. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefPubMedGoogle Scholar
  6. Brown JH, Lomolino MV (1998) Biogeography. Sinauer, SunderlandGoogle Scholar
  7. Chittka L, Reinhold H (1999) Towards an individual-based approach to insect learning. In: Elsner N, Eysel U (eds) Proceedings of the 27th Göttingen neurobiology conference. Thieme, Berlin, p 257Google Scholar
  8. Chittka L, Thomson JD (1997) Sensori-motor learning and its relevance for task specialization in bumble bees. Behav Ecol Sociobiol 41:385–398CrossRefGoogle Scholar
  9. Chittka L, Wells H (2004) Color vision in bees: mechanisms, ecology and evolution. In: Prete F (ed) How simple nervous systems create complex perceptual worlds. MIT, Boston, pp 165–191Google Scholar
  10. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377Google Scholar
  11. Chittka L, Spaethe J, Schmidt A, Hickelsberger A (2001) Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 106–126Google Scholar
  12. Dafni A, Bernhardt P, Shmida A, Ivri Y, Greenbaum S, O’Toole C, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92Google Scholar
  13. DeJonghe R (1986) Crossing experiments with Bombus terrestris terrestris (Linnaeus 1758) and Bombus terrestris xanthopus (Kriechbaumer 1870) and some notes on diapause and nosemose (Nosema) (Hymenoptera, Apoidea). Phegea 14:19–23Google Scholar
  14. Dornhaus A, Chittka L (2004) Why do honeybees dance. Behav Ecol Sociobiol 55:395–401CrossRefGoogle Scholar
  15. Dukas R, Morse DH (2003) Crab spiders affect flower visitation by bees. Oikos 101:157–163CrossRefGoogle Scholar
  16. Estoup A, Solignac M, Cornuet J-M, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris(Hymenoptera: Apidae) in Europe. Mol Ecol 5:19–31PubMedGoogle Scholar
  17. Ford EB (1955) Rapid evolution and the conditions which make it possible. Cold Spring Harb Symp Quant Biol 20:230–238PubMedGoogle Scholar
  18. Foster JB (1964) The evolution of mammals on islands. Nature 202:234–235Google Scholar
  19. Giurfa M, Núñez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259Google Scholar
  20. Goulson D, Peat J, Stout JC, Tucker J, Darwill B, Derwent LC, Hughes WOH (2002) Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? Anim Behav 64:123–130CrossRefGoogle Scholar
  21. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc London B 266:1711–1716CrossRefGoogle Scholar
  22. Heinrich B (1979) Bumblebee economics. Harvard University Press, CambridgeGoogle Scholar
  23. Heinrich B, Mudge PR, Deringis PG (1977) Laboratory analysis of flower constancy in foraging bumblebees: Bombus ternarius and B. terricola. Behav Ecol Sociobiol 2:247–265Google Scholar
  24. Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Struct Dev 30:179–193Google Scholar
  25. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120Google Scholar
  26. Olesen JM (1985) The Macaronesian bird-flower elements and its relation to bird and bee opportunists. Bot J Linn Soc 91:395–414Google Scholar
  27. Palmer M (2002) Testing the ’Island Rule’ for a tenebrionid beetle (Coleoptera Tenebrionidae). J Ecol 223:103–107Google Scholar
  28. Plowright RC, Owen RE (1980) The evolutionary significance of bumble bee color patterns: a mimetic interpretation. Evolution 34:622–637Google Scholar
  29. Schikora J (2001) Blütenfarben auf Mittelmeerinseln und die Rolle von genetischer Drift bei den Farbpräferenzen von Hummeln: “Zoologie II.” Julius-Maximilians-Universität, WürzburgGoogle Scholar
  30. Schikora J, Spaethe J, Brockman A, Chittka L (2002) Colour vision and colour preference in Bombus terrestris: a population biological approach. Zoology 105:28Google Scholar
  31. Smith C, Barber I, Wooton RJ, Chittka L (2004) A receiver bias in the origin of threespine stickleback mate choice. Proc R Soc London B 271:949–955CrossRefGoogle Scholar
  32. Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453Google Scholar
  33. Spaethe J, Weidenmüller A (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insect Soc 49:142–146CrossRefGoogle Scholar
  34. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Nat Acad Sci USA 98:3898–3903CrossRefPubMedGoogle Scholar
  35. Stanton ML, Galen C (1997) Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus. Am Nat 150:143–178CrossRefGoogle Scholar
  36. Stüber K (2002) Sammel- und Flugverhalten bei Hummeln: ein Vergleich zwischen Populationen. University of Würzburg, WürzburgGoogle Scholar
  37. Vogel S, Westerkamp C, Thiel B, Gessner K (1984) Ornithophilie auf den Canarischen Inseln. Plant Syst Evol 146:225–248Google Scholar
  38. Widmer A, Schmid-Hempel P, Estoup A, Scholl A (1998) Population genetic structure and colonization history of Bombus terrestris s.I. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81:563–572CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer-Verlag Tokyo 2004

Authors and Affiliations

  • Lars Chittka
    • 1
  • Thomas C. Ings
    • 1
  • Nigel E. Raine
    • 1
  1. 1.School of Biological Sciences, Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations