Functional brain mapping: overview of techniques and their application to neurosurgery

  • Soumya Sagar
  • Jonathan Rick
  • Ankush Chandra
  • Garima Yagnik
  • Manish K. AghiEmail author


Functional brain mapping (FBM) is an integral part of contemporary neurosurgery. It is crucial for safe and optimal resection of brain lesions like gliomas. The eloquent regions of the cortex like motor, somatosensory, Wernicke’s, and Broca are usually mapped, either preoperatively or intraoperatively. Since its birth in the nineteenth century, FBM has witnessed immense modernization, radical refinements, and the introduction of novel techniques, most of which are non-invasive. Direct electrical stimulation of the cortex, despite its high invasiveness, remains the technique of choice. Non-invasive techniques like fMRI and magnetoencephalography allow us the convenience of multiple mappings with minimal discomfort to the patients. They are quick, easy to do, and allow thorough study. Different modalities are now being combined to yield better delineations like fMRI and diffusion tensor imaging. This article reviews the physical principles, applications, merits, shortcomings, and latest developments of nine FBM techniques. Other than neurosurgical operations, these techniques have also been applied to studies of stroke, Alzheimer’s, and cognition. There are strong indications that the future of brain mapping shall see the non-invasive techniques playing a more dominant role as they become more sensitive and accurate due to advances in physics, refined algorithms, and subsequent validation against invasive techniques.


Brain mapping Glioma Eloquent Spatial Seizure 



Mr. Ankush Chandra and Mr. Jonathan Rick are fellows funded by Howard Hughes Medical Institute. No other funding was received.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.


  1. 1.
    Aydin U, Rampp S, Wollbrink A, Kugel H, Cho J, Knosche TR, Grova C, Wellmer J, Wolters CH (2017) Zoomed MRI guided by combined EEG/MEG source analysis: a multimodal approach for optimizing Presurgical epilepsy work-up and its application in a multi-focal epilepsy patient case study. Brain Topogr 30:417–433. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 20:327–339. CrossRefPubMedGoogle Scholar
  3. 3.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455. CrossRefPubMedGoogle Scholar
  4. 4.
    Berman JI, Berger MS, Mukherjee P, Henry RG (2004) Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101:66–72. CrossRefPubMedGoogle Scholar
  5. 5.
    Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, Berger MS, Parsa AT (2012) Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 117:1032–1038. CrossRefPubMedGoogle Scholar
  6. 6.
    Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200. CrossRefPubMedGoogle Scholar
  7. 7.
    Bolognini N, Ro T (2010) Transcranial magnetic stimulation: disrupting neural activity to alter and assess brain function. J Neurosci 30:9647–9650. CrossRefPubMedGoogle Scholar
  8. 8.
    Borchers S, Himmelbach M, Logothetis N, Karnath HO (2011) Direct electrical stimulation of human cortex - the gold standard for mapping brain functions? Nat Rev Neurosci 13:63–70. CrossRefPubMedGoogle Scholar
  9. 9.
    Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M (2016) Association of the Extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469. CrossRefPubMedGoogle Scholar
  10. 10.
    Choi JK, Choi MG, Kim JM, Bae HM (2013) Efficient data extraction method for near-infrared spectroscopy (NIRS) systems with high spatial and temporal resolution. Ieee T Biomed Circ S 7:169–177. CrossRefGoogle Scholar
  11. 11.
    Choudhri AF, Whitehead MT, Klimo P Jr, Montgomery BK, Boop FA (2014) Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 56:169–174. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D'Andrea G, Angelini A, Romano A, Di Lauro A, Sessa G, Bozzao A, Ferrante L (2012) Intraoperative DTI and brain mapping for surgery of neoplasm of the motor cortex and the corticospinal tract: our protocol and series in BrainSUITE. Neurosurg Rev 35:401–412; discussion 412. CrossRefPubMedGoogle Scholar
  13. 13.
    Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895PubMedGoogle Scholar
  14. 14.
    Descoteaux M, Deriche R, Knosche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286. CrossRefPubMedGoogle Scholar
  15. 15.
    Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600. CrossRefPubMedGoogle Scholar
  16. 16.
    Doss RC, Zhang W, Risse GL, Dickens DL (2009) Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 50:2242–2248. CrossRefPubMedGoogle Scholar
  17. 17.
    Duffau H (2014) The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg 81:56–58. CrossRefPubMedGoogle Scholar
  18. 18.
    Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125:199–214CrossRefPubMedGoogle Scholar
  19. 19.
    Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO (2016) Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro-Oncology 18:426–434. CrossRefPubMedGoogle Scholar
  20. 20.
    El Beltagy MA, Atteya MM (2013) The benefits of navigated intraoperative ultrasonography during resection of fourth ventricular tumors in children. Childs Nerv Syst 29:1079–1088. CrossRefPubMedGoogle Scholar
  21. 21.
    Englot DJ, Nagarajan SS, Imber BS, Raygor KP, Honma SM, Mizuiri D, Mantle M, Knowlton RC, Kirsch HE, Chang EF (2015) Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 56:949–958. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120:3433–3445. CrossRefPubMedGoogle Scholar
  23. 23.
    Feigl GC, Hiergeist W, Fellner C, Schebesch KM, Doenitz C, Finkenzeller T, Brawanski A, Schlaier J (2014) Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg 81:144–150. CrossRefPubMedGoogle Scholar
  24. 24.
    Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83:1140–1144CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Freeman WJ, Rogers LJ (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87:937–945. CrossRefPubMedGoogle Scholar
  26. 26.
    Frey D, Schilt S, Strack V, Zdunczyk A, Rosler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncology 16:1365–1372. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fritsch G, Hitzig E (2009) Electric excitability of the cerebrum (Uber die elektrische Erregbarkeit des Grosshirns). Epilepsy Behav 15:123–130. CrossRefPubMedGoogle Scholar
  28. 28.
    Gallagher A, Beland R, Lassonde M (2012) The contribution of functional near-infrared spectroscopy (fNIRS) to the presurgical assessment of language function in children. Brain Lang 121:124–129. CrossRefPubMedGoogle Scholar
  29. 29.
    Gallagher A, Theriault M, Maclin E, Low K, Gratton G, Fabiani M, Gagnon L, Valois K, Rouleau I, Sauerwein HC, Carmant L, Nguyen DK, Lortie A, Lepore F, Beland R, Lassonde M (2007) Near-infrared spectroscopy as an alternative to the Wada test for language mapping in children, adults and special populations. Epileptic Disord 9:241–255. PubMedCrossRefGoogle Scholar
  30. 30.
    Gelinas JN, Battison AW, Smith S, Connolly MB, Steinbok P (2011) Electrocorticography and seizure outcomes in children with lesional epilepsy. Childs Nerv Syst 27:381–390. CrossRefPubMedGoogle Scholar
  31. 31.
    Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL (2018) Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases. J Med Imaging (Bellingham) 5:021210. CrossRefGoogle Scholar
  32. 32.
    Hamandi K, Routley BC, Koelewijn L, Singh KD (2016) Non-invasive brain mapping in epilepsy: applications from magnetoencephalography. J Neurosci Methods 260:283–291. CrossRefPubMedGoogle Scholar
  33. 33.
    Hamberger MJ, Williams AC, Schevon CA (2014) Extraoperative neurostimulation mapping: results from an international survey of epilepsy surgery programs. Epilepsia 55:933–939. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hari R, Salmelin R (2012) Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition. Neuroimage 61:386–396. CrossRefPubMedGoogle Scholar
  35. 35.
    Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G (2012) Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J Vis Exp.
  36. 36.
    Hiura M, Nariai T, Ishii K, Sakata M, Oda K, Toyohara J, Ishiwata K (2014) Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET. J Cereb Blood Flow Metab 34:389–396. CrossRefPubMedGoogle Scholar
  37. 37.
    Ille S, Sollmann N, Butenschoen VM, Meyer B, Ringel F, Krieg SM (2016) Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery. Acta Neurochir 158:2265–2275. CrossRefPubMedGoogle Scholar
  38. 38.
    Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, Negwer C, Droese D, Zimmer C, Meyer B, Ringel F, Krieg SM (2015) Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. J Neurosurg 123:212–225. CrossRefPubMedGoogle Scholar
  39. 39.
    Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, M ER, Binder JR (2013) Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 54:314–322. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim GH, Seo JH, Schroff S, Chen PC, Lee KH, Baumgartner J (2017) Impact of intraoperative 3-T MRI with diffusion tensor imaging on hemispherectomy. J Neurosurg Pediatr 19:63–69. CrossRefPubMedGoogle Scholar
  41. 41.
    Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2010) Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52:37–46. CrossRefPubMedGoogle Scholar
  42. 42.
    Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001. CrossRefPubMedGoogle Scholar
  43. 43.
    Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U, Korinth M, Willmes K, Gilsbach JM, Thron A (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70:749–760CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Laundre BJ, Jellison BJ, Badie B, Alexander AL, Field AS (2005) Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. Am J Neuroradiol 26:791–796PubMedGoogle Scholar
  45. 45.
    Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehericy S (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 112:503–511. CrossRefPubMedGoogle Scholar
  46. 46.
    Loddenkemper T, Moddel G, Dinner DS, Kim H, Schuele SU, Alexopoulos AV, Kotagal P, Luders HO (2009) Language assessment in Wada test: comparison of methohexital and amobarbital. Seizure 18:656–659. CrossRefPubMedGoogle Scholar
  47. 47.
    Loddenkemper T, Morris HH, Moddel G (2008) Complications during the Wada test. Epilepsy Behav 13:551–553. CrossRefPubMedGoogle Scholar
  48. 48.
    Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531. CrossRefPubMedGoogle Scholar
  49. 49.
    Majos A, Tybor K, Stefanczyk L, Goraj B (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15:1148–1158. CrossRefPubMedGoogle Scholar
  50. 50.
    Mandonnet E, Winkler PA, Duffau H (2010) Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir 152:185–193. CrossRefPubMedGoogle Scholar
  51. 51.
    McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162. CrossRefPubMedGoogle Scholar
  52. 52.
    Meng L, Berger MS, Gelb AW (2015) The potential benefits of awake craniotomy for brain tumor resection. An Anesthesiologist's Perspective J Neurosurg Anesthesiol 27:310–317. CrossRefPubMedGoogle Scholar
  53. 53.
    Negwer C, Beurskens E, Sollmann N, Maurer S, Ille S, Giglhuber K, Kirschke JS, Ringel F, Meyer B, Krieg SM (2018) Loss of subcortical language pathways correlates with surgery-related aphasia in patients with brain tumor: an investigation via repetitive navigated transcranial magnetic stimulation-based diffusion tensor imaging Fiber tracking. World Neurosurg 111:e806–e818. CrossRefPubMedGoogle Scholar
  54. 54.
    Nowinski WL, Johnson A, Chua BC, Nowinska NG (2012) Three-dimensional interactive and stereotactic atlas of the cranial nerves and their nuclei correlated with surface neuroanatomy, vasculature and magnetic resonance imaging. J Neurosci Methods 206:205–216. CrossRefPubMedGoogle Scholar
  55. 55.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pallud J, Mandonnet E, Corns R, Dezamis E, Parraga E, Zanello M, Spena G (2017) Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy. Neurochirurgie 63:158–163. CrossRefPubMedGoogle Scholar
  57. 57.
    Papanicolaou AC, Rezaie R, Narayana S, Choudhri AF, Wheless JW, Castillo EM, Baumgartner JE, Boop FA (2014) Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia 55:629–632. CrossRefPubMedGoogle Scholar
  58. 58.
    Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E, Billingsley RL, Buchanan S, Wheless J, Maggio V, Maggio WW (2004) Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876. CrossRefPubMedGoogle Scholar
  59. 59.
    Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Petrirena GJ, Goldman S, Delattre JY (2011) Advances in PET imaging of brain tumors. a referring physician's perspective Curr Opin Oncol 23:617–623. CrossRefPubMedGoogle Scholar
  61. 61.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648. CrossRefPubMedGoogle Scholar
  62. 62.
    Raabe A, Beck J, Schucht P, Seidel K (2014) Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 120:1015–1024. CrossRefPubMedGoogle Scholar
  63. 63.
    Raichle ME (2009) A brief history of human brain mapping. Trends Neurosci 32:118–126. CrossRefPubMedGoogle Scholar
  64. 64.
    Rheims S, Jung J, Ryvlin P (2013) Combination of PET and magnetoencephalography in the Presurgical assessment of MRI-negative epilepsy. Front Neurol 4:188. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Riva M, Fava E, Gallucci M, Comi A, Casarotti A, Alfiero T, Raneri FA, Pessina F, Bello L (2016) Monopolar high-frequency language mapping: can it help in the surgical management of gliomas? A comparative clinical study. J Neurosurg 124:1479–1489. CrossRefPubMedGoogle Scholar
  66. 66.
    Rodin D, Bar-Yosef O, Smith ML, Kerr E, Morris D, Donner EJ (2013) Language dominance in children with epilepsy: concordance of fMRI with intracarotid amytal testing and cortical stimulation. Epilepsy Behav 29:7–12. CrossRefPubMedGoogle Scholar
  67. 67.
    Rogic M, Deletis V, Fernandez-Conejero I (2014) Inducing transient language disruptions by mapping of Broca's area with modified patterned repetitive transcranial magnetic stimulation protocol. J Neurosurg 120:1033–1041. CrossRefPubMedGoogle Scholar
  68. 68.
    Rosazza C, Ghielmetti F, Minati L, Vitali P, Giovagnoli AR, Deleo F, Didato G, Parente A, Marras C, Bruzzone MG, D'Incerti L, Spreafico R, Villani F (2013) Preoperative language lateralization in temporal lobe epilepsy (TLE) predicts peri-ictal, pre- and post-operative language performance: an fMRI study. Neuroimage Clin 3:73–83. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117. CrossRefPubMedGoogle Scholar
  71. 71.
    Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27. CrossRefPubMedGoogle Scholar
  72. 72.
    Sarang A, Dinsmore J (2003) Anaesthesia for awake craniotomy--evolution of a technique that facilitates awake neurological testing. Br J Anaesth 90:161–165CrossRefPubMedGoogle Scholar
  73. 73.
    Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111. CrossRefPubMedGoogle Scholar
  74. 74.
    Schucht P, Seidel K, Murek M, Stieglitz LH, Urwyler N, Wiest R, Steinlin M, Leibundgut K, Raabe A, Beck J (2014) Low-threshold monopolar motor mapping for resection of lesions in motor eloquent areas in children and adolescents. J Neurosurg Pediatr 13:572–578. CrossRefPubMedGoogle Scholar
  75. 75.
    Sherbondy AJ, Dougherty RF, Napel S, Wandell BA (2008) Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 8:12. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sliwinska MW, Vitello S, Devlin JT (2014) Transcranial Magnetic Stimulation for Investigating Causal Brain-behavioral Relationships and their Time Course. Jove-J Vis Exp:e51735.
  77. 77.
    Sollmann N, Picht T, Makela JP, Meyer B, Ringel F, Krieg SM (2013) Navigated transcranial magnetic stimulation for preoperative language mapping in a patient with a left frontoopercular glioblastoma. J Neurosurg 118:175–179. CrossRefPubMedGoogle Scholar
  78. 78.
    Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS (2016) Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg 124:1460–1469. CrossRefPubMedGoogle Scholar
  79. 79.
    Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T, Group AL-GS (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576; discussion 564-576. CrossRefPubMedGoogle Scholar
  80. 80.
    Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn Reson Imaging 23:887–905. CrossRefPubMedGoogle Scholar
  81. 81.
    Szaflarski JP, Gloss D, Binder JR, Gaillard WD, Golby AJ, Holland SK, Ojemann J, Spencer DC, Swanson SJ, French JA, Theodore WH (2017) Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology. Neurology 88:395–402. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Szelenyi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, Neuloh G, Signorelli F, Sala F, Workgroup for Intraoperative Management in Low-Grade Glioma Surgery within the European Low-Grade Glioma N (2010) Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus 28:E7. CrossRefPubMedGoogle Scholar
  83. 83.
    Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E (2009) Preoperative fMRI in tumour surgery. Eur Radiol 19:2523–2534. CrossRefPubMedGoogle Scholar
  84. 84.
    Toh CH, Wei KC, Ng SH, Wan YL, Lin CP, Castillo M (2011) Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol 32:1646–1651. CrossRefPubMedGoogle Scholar
  85. 85.
    Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H (2008) The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 25:E16. CrossRefPubMedGoogle Scholar
  86. 86.
    Tyndall AJ, Reinhardt J, Tronnier V, Mariani L, Stippich C (2017) Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. Eur Radiol 27:267–278. CrossRefPubMedGoogle Scholar
  87. 87.
    Vassal F, Schneider F, Nuti C (2013) Intraoperative use of diffusion tensor imaging-based tractography for resection of gliomas located near the pyramidal tract: comparison with subcortical stimulation mapping and contribution to surgical outcomes. Br J Neurosurg 27:668–675. CrossRefPubMedGoogle Scholar
  88. 88.
    Volkow ND, Rosen B, Farde L (1997) Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci U S A 94:2787–2788CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wu JY, Sankar R, Lerner JT, Matsumoto JH, Vinters HV, Mathern GW (2010) Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 75:1686–1694. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yang PF, Pei JS, Zhang HJ, Lin Q, Mei Z, Zhong ZH, Tian J, Jia YZ, Chen ZQ, Zheng ZY (2014) Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav 41:91–97. CrossRefPubMedGoogle Scholar
  91. 91.
    Yang T, Hakimian S, Schwartz TH (2014) Intraoperative ElectroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord 16:271–279. PubMedCrossRefGoogle Scholar
  92. 92.
    Zeineh MM, Holdsworth S, Skare S, Atlas SW, Bammer R (2012) Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe. Neuroimage 62:2065–2082. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurological SurgeryUniversity of California, San Francisco (UCSF)San FranciscoUSA

Personalised recommendations