Advertisement

Intradural spinal tumors in adults—update on management and outcome

  • Malte Ottenhausen
  • Georgios Ntoulias
  • Imithri Bodhinayake
  • Finn-Hannes Ruppert
  • Stefan Schreiber
  • Annette Förschler
  • John A. Boockvar
  • Andreas JödickeEmail author
Review

Abstract

Among spinal tumors that occur intradurally, meningiomas, nerve sheath tumors, ependymomas, and astrocytomas are the most common. While a spinal MRI is the state of the art to diagnose intradural spinal tumors, in some cases CT scans, angiography, CSF analyses, and neurophysiological examination can be valuable. The management of these lesions depends not only on the histopathological diagnosis but also on the clinical presentation and the anatomical location, allowing either radical resection as with most extramedullary lesions or less invasive strategies as with intramedullary lesions. Although intramedullary lesions are rare and sometimes difficult to manage, well-planned treatment can achieve excellent outcome without treatment-related deficits. Technical advances in imaging, neuromonitoring, minimally invasive approaches, and radiotherapy have improved the outcome of intradural spinal tumors. However, the outcome in malignant intramedullary tumors remains poor. While surgery is the mainstay treatment for many of these lesions, radiation and chemotherapy are of growing importance in recurrent and multilocular disease. We reviewed the literature on this topic to provide an overview of spinal cord tumors, treatment strategies, and outcomes. Typical cases of extra- and intramedullary tumors are presented to illustrate management options and outcomes.

Keywords

Intradural Spinal Intramedullary Meningioma Ependymoma Astrocytoma Neurofibroma Schwannoma Dumbbell tumor 

Notes

Acknowledgements

The authors thank Alexander Bock, MD, Head of Department of Neuroradiology, Vivantes Klinikum Neukölln, Berlin, Germany, for close clinical cooperation and for providing MR images. We also thank Matthew Holt, Medical Illustrator, for the outstanding medical illustrations.

Funding

None.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants for whom identifying information is included in this article.

Supplementary material

10143_2018_957_MOESM1_ESM.flv (6.6 mb)
Video 1 Removal of a dumbbell-shaped cervical spinal schwannoma (C2/3) using a right-sided anterolateral approach (FLV 6770 kb)
10143_2018_957_MOESM2_ESM.flv (25.9 mb)
Video 2 En bloc removal of an intramedullary cervical ependymoma via a multi-level laminotomy by microsurgical dissection (FLV 26544 kb)

References

  1. 1.
    Van Goethem JW, van den Hauwe L, Ozsarlak O, De Schepper AM, Parizel PM (2004) Spinal tumors. Eur J Radiol 50:159–176.  https://doi.org/10.1016/j.ejrad.2003.10.021 PubMedCrossRefGoogle Scholar
  2. 2.
    Youmans JR, Winn HR Youmans neurological surgery. Saunders, CityGoogle Scholar
  3. 3.
    Tonn J-C, Grossman SA, Rutka JT, Westphal M (2006) Neuro-oncology of CNS tumors. Springer, Berlin Heidelberg, CityCrossRefGoogle Scholar
  4. 4.
    McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72:523–532.  https://doi.org/10.3171/jns.1990.72.4.0523 PubMedCrossRefGoogle Scholar
  5. 5.
    Klekamp J, Samii M (1993) Introduction of a score system for the clinical evaluation of patients with spinal processes. Acta Neurochir 123:221–223PubMedGoogle Scholar
  6. 6.
    Frankel HL, Hancock DO, Hyslop G et al (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I Paraplegia 7:179–192.  https://doi.org/10.1038/sc.1969.30 PubMedGoogle Scholar
  7. 7.
    dos Santos MP, Zhang J, Ghinda D et al (2015) Imaging diagnosis and the role of endovascular embolization treatment for vascular intraspinal tumors. Neurosurg Focus 39:E16.  https://doi.org/10.3171/2015.5.FOCUS1514 PubMedCrossRefGoogle Scholar
  8. 8.
    Rubinstein LJ, Hartmann WH, Institute of Pathology (1972) Atlas of tumor pathology Ser. 2 Fasc. 6 @Tumors of the central nervous system [Hauptbd.]. [s.N.], CityGoogle Scholar
  9. 9.
    Cohen-Gadol AA, Zikel OM, Koch CA, Scheithauer BW, Krauss WE (2003) Spinal meningiomas in patients younger than 50 years of age: a 21-year experience. J Neurosurg 98:258–263PubMedGoogle Scholar
  10. 10.
    Yoon SH, Chung CK, Jahng TA (2007) Surgical outcome of spinal canal meningiomas. J Korean Neurosurg Soc 42:300–304.  https://doi.org/10.3340/jkns.2007.42.4.300 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Setzer M, Vatter H, Marquardt G, Seifert V, Vrionis FD (2007) Management of spinal meningiomas: surgical results and a review of the literature. Neurosurg Focus 23:E14.  https://doi.org/10.3171/FOC-07/10/E14 PubMedCrossRefGoogle Scholar
  12. 12.
    Sacko O, Rabarijaona M, Loiseau H (2008) Spinal meningioma surgery after 75 years of age. Neurochirurgie 54:512–516.  https://doi.org/10.1016/j.neuchi.2008.02.059 PubMedCrossRefGoogle Scholar
  13. 13.
    Iacoangeli M, Gladi M, Di Rienzo A et al (2012) Minimally invasive surgery for benign intradural extramedullary spinal meningiomas: experience of a single institution in a cohort of elderly patients and review of the literature. Clin Interv Aging 7:557–564.  https://doi.org/10.2147/CIA.S38923 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Muroi C, Fandino J, Coluccia D, Berkmann S, Fathi AR, Landolt H (2013) 5-Aminolevulinic acid fluorescence-guided surgery for spinal meningioma. World neurosurgery 80(223):e221–e223.  https://doi.org/10.1016/j.wneu.2012.12.017 Google Scholar
  15. 15.
    Kufeld M, Wowra B, Muacevic A, Zausinger S, Tonn JC (2012) Radiosurgery of spinal meningiomas and schwannomas. Technol Cancer Res Treat 11:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gottfried ON, Gluf W, Quinones-Hinojosa A, Kan P, Schmidt MH (2003) Spinal meningiomas: surgical management and outcome. Neurosurg Focus 14:e2PubMedCrossRefGoogle Scholar
  17. 17.
    King AT, Sharr MM, Gullan RW, Bartlett JR (1998) Spinal meningiomas: a 20-year review. Br J Neurosurg 12:521–526PubMedCrossRefGoogle Scholar
  18. 18.
    Klekamp J, Samii M (1999) Surgical results for spinal meningiomas. Surg Neurol 52:552–562PubMedCrossRefGoogle Scholar
  19. 19.
    Levy WJ Jr, Bay J, Dohn D (1982) Spinal cord meningioma. J Neurosurg 57:804–812.  https://doi.org/10.3171/jns.1982.57.6.0804 PubMedCrossRefGoogle Scholar
  20. 20.
    Roux FX, Nataf F, Pinaudeau M, Borne G, Devaux B, Meder JF (1996) Intraspinal meningiomas: review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. Surg Neurol 46:458–463 discussion 463-454PubMedCrossRefGoogle Scholar
  21. 21.
    Sandalcioglu IE, Hunold A, Muller O, Bassiouni H, Stolke D, Asgari S (2008) Spinal meningiomas: critical review of 131 surgically treated patients. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section Cervical Spine Res Soc 17:1035–1041.  https://doi.org/10.1007/s00586-008-0685-y CrossRefGoogle Scholar
  22. 22.
    Solero CL, Fornari M, Giombini S et al (1989) Spinal meningiomas: review of 174 operated cases. Neurosurgery 25:153–160PubMedCrossRefGoogle Scholar
  23. 23.
    Schaller B (2005) Spinal meningioma: relationship between histological subtypes and surgical outcome? J Neuro-Oncol 75:157–161.  https://doi.org/10.1007/s11060-005-1469-4 CrossRefGoogle Scholar
  24. 24.
    Riad H, Knafo S, Segnarbieux F, Lonjon N (2013) Spinal meningiomas: surgical outcome and literature review. Neurochirurgie 59:30–34.  https://doi.org/10.1016/j.neuchi.2012.10.137 PubMedCrossRefGoogle Scholar
  25. 25.
    Haegelen C, Morandi X, Riffaud L, Amlashi SF, Leray E, Brassier G (2005) Results of spinal meningioma surgery in patients with severe preoperative neurological deficits. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section of the Cervical Spine Res Soc 14:440–444.  https://doi.org/10.1007/s00586-004-0809-y CrossRefGoogle Scholar
  26. 26.
    Ozawa H, Kokubun S, Aizawa T, Hoshikawa T, Kawahara C (2007) Spinal dumbbell tumors: an analysis of a series of 118 cases. J Neurosurg Spine 7:587–593.  https://doi.org/10.3171/SPI-07/12/587 PubMedCrossRefGoogle Scholar
  27. 27.
    Nanda A, Kukreja S, Ambekar S, Bollam P, Sin AH (2015) Surgical strategies in the management of spinal nerve sheath tumors. World Neurosurg 83:886–899.  https://doi.org/10.1016/j.wneu.2015.01.020 PubMedCrossRefGoogle Scholar
  28. 28.
    Raysi Dehcordi S, Marzi S, Ricci A, Di Cola F, Galzio RJ (2012) Less invasive approaches for the treatment of cervical schwannomas: our experience. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section of the Cervical Spine Res Soc 21:887–896.  https://doi.org/10.1007/s00586-011-2118-6 CrossRefGoogle Scholar
  29. 29.
    Sachdev S, Dodd RL, Chang SD et al (2011) Stereotactic radiosurgery yields long-term control for benign intradural, extramedullary spinal tumors. Neurosurgery 69:533–539; discussion 539.  https://doi.org/10.1227/NEU.0b013e318218db23 PubMedCrossRefGoogle Scholar
  30. 30.
    Lee SE, Chung CK, Kim HJ (2013) Intramedullary schwannomas: long-term outcomes of ten operated cases. J Neuro-Oncol 113:75–81.  https://doi.org/10.1007/s11060-013-1091-9 CrossRefGoogle Scholar
  31. 31.
    Fernandes RL, Lynch JC, Welling L et al (2014) Complete removal of the spinal nerve sheath tumors. Surgical techniques and results from a series of 30 patients. Arq Neuropsiquiatr 72:312–317PubMedCrossRefGoogle Scholar
  32. 32.
    Lenzi J, Anichini G, Landi A et al (2017) spinal nerves schwannomas: experience on 367 cases-historic overview on how clinical, radiological, and surgical practices have changed over a course of 60 years. Neurol Res Int 2017(1):3568359–3568312.  https://doi.org/10.1155/2017/3568359 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Sonneland PR, Scheithauer BW, Onofrio BM (1985) Myxopapillary ependymoma. A clinicopathologic and immunocytochemical study of 77 cases. Cancer 56:883–893PubMedCrossRefGoogle Scholar
  34. 34.
    Klekamp J (2015) Spinal ependymomas. Part 2: Ependymomas of the filum terminale. Neurosurgical Focus 39:E7.  https://doi.org/10.3171/2015.5.FOCUS15151 PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamura M, Ishii K, Watanabe K et al (2009) Long-term surgical outcomes for myxopapillary ependymomas of the cauda equina. Spine 34:E756–E760.  https://doi.org/10.1097/BRS.0b013e3181b34d16 PubMedCrossRefGoogle Scholar
  36. 36.
    Hallacq P, Labrousse F, Streichenberger N, Lisii D, Fischer G (2003) Bifocal myxopapillary ependymoma of the terminal filum: the end of a spectrum? Case report. J Neurosurg 98:288–289PubMedGoogle Scholar
  37. 37.
    Qian X, Goumnerova LC, De Girolami U, Cibas ES (2008) Cerebrospinal fluid cytology in patients with ependymoma: a bi-institutional retrospective study. Cancer 114:307–314.  https://doi.org/10.1002/cncr.23799 PubMedCrossRefGoogle Scholar
  38. 38.
    de Jong L, Calenbergh FV, Menten J et al (2012) Ependymomas of the filum terminale: the role of surgery and radiotherapy. Surg Neurol Int 3:76.  https://doi.org/10.4103/2152-7806.98509 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Weber DC, Wang Y, Miller R et al (2015) Long-term outcome of patients with spinal myxopapillary ependymoma: treatment results from the MD Anderson Cancer Center and institutions from the Rare Cancer Network. Neuro-Oncology 17:588–595.  https://doi.org/10.1093/neuonc/nou293 PubMedCrossRefGoogle Scholar
  40. 40.
    Wostrack M, Pape H, Kreutzer J, Ringel F, Meyer B, Stoffel M (2012) Surgical treatment of spinal intradural carcinoma metastases. Acta Neurochir 154:349–357.  https://doi.org/10.1007/s00701-011-1204-1 PubMedCrossRefGoogle Scholar
  41. 41.
    Reina MA, Lopez-Garcia A, Dittmann M, de Andres JA, Blazquez MG (1996) Iatrogenic spinal epidermoid tumors. A late complication of spinal puncture. Revista espanola de anestesiologia y reanimacion 43:142–146PubMedGoogle Scholar
  42. 42.
    Barbagallo GMV, Maione M, Raudino G, Certo F (2017) Thoracic intradural-extramedullary epidermoid tumor: the relevance for resection of classic subarachnoid space microsurgical anatomy in modern spinal surgery. Technical note and review of the literature. World Neurosurg 108:54–61.  https://doi.org/10.1016/j.wneu.2017.08.078 PubMedCrossRefGoogle Scholar
  43. 43.
    Morita M, Miyauchi A, Okuda S, Oda T, Aono H, Iwasaki M (2012) Intraspinal epidermoid tumor of the cauda equina region: seven cases and a review of the literature. J Spinal Disord Tech 25:292–298.  https://doi.org/10.1097/BSD.0b013e31821e2464 PubMedCrossRefGoogle Scholar
  44. 44.
    Dobre MC, Smoker WR, Moritani T, Kirby P (2012) Spontaneously ruptured intraspinal epidermoid cyst causing chemical meningitis. J Clin Neurosc : Off J Neurosurg Soc Australas 19:587–589.  https://doi.org/10.1016/j.jocn.2011.09.006 CrossRefGoogle Scholar
  45. 45.
    van Aalst J, Hoekstra F, Beuls EA et al (2009) Intraspinal dermoid and epidermoid tumors: report of 18 cases and reappraisal of the literature. Pediatr Neurosurg 45:281–290.  https://doi.org/10.1159/000235602 PubMedCrossRefGoogle Scholar
  46. 46.
    Pang D (2015) Total resection of complex spinal cord lipomas: how, why, and when to operate? Neurol Med Chir 55:695–721.  https://doi.org/10.2176/nmc.ra.2014-0442 CrossRefGoogle Scholar
  47. 47.
    Wan W, Yang C, Yan W et al (2017) Adult-onset intradural spinal teratoma: report of 18 consecutive cases and outcomes in a single center. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section Cervical Spine Res Soc 26:1917–1928.  https://doi.org/10.1007/s00586-016-4939-9 CrossRefGoogle Scholar
  48. 48.
    Chen CT, Lee CY, Lee ST, Chang CN, Wei KC, Wu CT (2016) Neurenteric cysts: risk factors and management of recurrence. Acta Neurochir 158:1325–1331.  https://doi.org/10.1007/s00701-016-2828-y PubMedCrossRefGoogle Scholar
  49. 49.
    Hong B, Nakamura M, Hartmann C, Brandis A, Ganser A, Krauss JK (2013) Delayed distant spinal metastasis in thymomas. Spine 38:E1709–E1713.  https://doi.org/10.1097/BRS.0000000000000029 PubMedCrossRefGoogle Scholar
  50. 50.
    Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G (2005) Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 56:972–981 discussion 972-981PubMedGoogle Scholar
  51. 51.
    Bansal S, Ailawadhi P, Suri A et al (2013) Ten years’ experience in the management of spinal intramedullary tumors in a single institution. J Clin Neurosci : Off J Neurosurg Soc Australas 20:292–298.  https://doi.org/10.1016/j.jocn.2012.01.056 CrossRefGoogle Scholar
  52. 52.
    Harrop JS, Ganju A, Groff M, Bilsky M (2009) Primary intramedullary tumors of the spinal cord. Spine 34:S69–S77.  https://doi.org/10.1097/BRS.0b013e3181b95c6f PubMedCrossRefGoogle Scholar
  53. 53.
    Samuel N, Tetreault L, Santaguida C et al (2016) Clinical and pathological outcomes after resection of intramedullary spinal cord tumors: a single-institution case series. Neurosurg Focus 41:E8.  https://doi.org/10.3171/2016.5.FOCUS16147 PubMedCrossRefGoogle Scholar
  54. 54.
    Brotchi J, Fischer G (1998) Spinal cord ependymomas. Neurosurg Focus 4:e2PubMedCrossRefGoogle Scholar
  55. 55.
    Ruda R, Gilbert M, Soffietti R (2008) Ependymomas of the adult: molecular biology and treatment. Curr Opin Neurol 21:754–761.  https://doi.org/10.1097/WCO.0b013e328317efe8 PubMedCrossRefGoogle Scholar
  56. 56.
    Oh MC, Ivan ME, Sun MZ et al (2013) Adjuvant radiotherapy delays recurrence following subtotal resection of spinal cord ependymomas. Neuro-Oncology 15:208–215.  https://doi.org/10.1093/neuonc/nos286 PubMedCrossRefGoogle Scholar
  57. 57.
    Abdel-Wahab M, Etuk B, Palermo J et al (2006) Spinal cord gliomas: a multi-institutional retrospective analysis. Int J Radiat Oncol Biol Phys 64:1060–1071.  https://doi.org/10.1016/j.ijrobp.2005.09.038 PubMedCrossRefGoogle Scholar
  58. 58.
    Bostrom A, Kanther NC, Grote A, Bostrom J (2014) Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes 7:908.  https://doi.org/10.1186/1756-0500-7-908 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Garces-Ambrossi GL, McGirt MJ, Mehta VA et al (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine 11:591–599.  https://doi.org/10.3171/2009.4.SPINE08159 PubMedCrossRefGoogle Scholar
  60. 60.
    Karikari IO, Nimjee SM, Hodges TR et al (2011) Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery 68:188–197; discussion 197.  https://doi.org/10.1227/NEU.0b013e3181fe3794 PubMedCrossRefGoogle Scholar
  61. 61.
    Klekamp J (2015) Spinal ependymomas. Part 1: intramedullary ependymomas. Neurosurg Focus 39:E6.  https://doi.org/10.3171/2015.5.FOCUS15161 PubMedCrossRefGoogle Scholar
  62. 62.
    Kucia EJ, Bambakidis NC, Chang SW, Spetzler RF (2011) Surgical technique and outcomes in the treatment of spinal cord ependymomas, part 1: intramedullary ependymomas. Neurosurgery 68:57–63; discussion 63.  https://doi.org/10.1227/NEU.0b013e318208f181 PubMedGoogle Scholar
  63. 63.
    Lee SH, Chung CK, Kim CH et al (2013) Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea Spinal Oncology Research Group. Neuro-Oncology 15:921–929.  https://doi.org/10.1093/neuonc/not038 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yang S, Yang X, Hong G (2009) Surgical treatment of one hundred seventy-four intramedullary spinal cord tumors. Spine 34:2705–2710.  https://doi.org/10.1097/BRS.0b013e3181b43484 PubMedCrossRefGoogle Scholar
  65. 65.
    Sgouros S, Malluci CL, Jackowski A (1996) Spinal ependymomas—the value of postoperative radiotherapy for residual disease control. Br J Neurosurg 10:559–566PubMedCrossRefGoogle Scholar
  66. 66.
    Tarapore PE, Modera P, Naujokas A et al (2013) Pathology of spinal ependymomas: an institutional experience over 25 years in 134 patients. Neurosurgery 73:247–255; discussion 255.  https://doi.org/10.1227/01.neu.0000430764.02973.78 PubMedCrossRefGoogle Scholar
  67. 67.
    Safaee M, Oh MC, Mummaneni PV et al (2014) Surgical outcomes in spinal cord ependymomas and the importance of extent of resection in children and young adults. J Neurosurg Pediatr 13:393–399.  https://doi.org/10.3171/2013.12.PEDS13383 PubMedCrossRefGoogle Scholar
  68. 68.
    Li TY, Chu JS, Xu YL et al (2014) Surgical strategies and outcomes of spinal ependymomas of different lengths: analysis of 210 patients: clinical article. J Neurosurg Spine 21:249–259.  https://doi.org/10.3171/2014.3.SPINE13481 PubMedCrossRefGoogle Scholar
  69. 69.
    Epstein FJ, Farmer JP, Freed D (1992) Adult intramedullary astrocytomas of the spinal cord. J Neurosurg 77:355–359.  https://doi.org/10.3171/jns.1992.77.3.0355 PubMedCrossRefGoogle Scholar
  70. 70.
    Minehan KJ, Shaw EG, Scheithauer BW, Davis DL, Onofrio BM (1995) Spinal cord astrocytoma: pathological and treatment considerations. J Neurosurg 83:590–595.  https://doi.org/10.3171/jns.1995.83.4.0590 PubMedCrossRefGoogle Scholar
  71. 71.
    Fakhreddine MH, Mahajan A, Penas-Prado M et al (2013) Treatment, prognostic factors, and outcomes in spinal cord astrocytomas. Neuro-Oncology 15:406–412.  https://doi.org/10.1093/neuonc/nos309 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Adams H, Avendano J, Raza SM, Gokaslan ZL, Jallo GI, Quinones-Hinojosa A (2012) Prognostic factors and survival in primary malignant astrocytomas of the spinal cord: a population-based analysis from 1973 to 2007. Spine 37:E727–E735.  https://doi.org/10.1097/BRS.0b013e31824584c0 PubMedCrossRefGoogle Scholar
  73. 73.
    Beyer S, von Bueren AO, Klautke G et al (2016) A systematic review on the characteristics, treatments and outcomes of the patients with primary spinal glioblastomas or gliosarcomas reported in literature until March 2015. PLoS One 11:e0148312.  https://doi.org/10.1371/journal.pone.0148312 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63:55–60; discussion 60-51.  https://doi.org/10.1227/01.NEU.0000335070.37943.09 PubMedCrossRefGoogle Scholar
  75. 75.
    Tovar Martin MI, Lopez Ramirez E, Saura Rojas E, Arregui Castillo G, Zurita Herrera M (2011) Spinal cord astrocytoma: multidisciplinary experience. Clin Transl Oncol 13:185–188PubMedCrossRefGoogle Scholar
  76. 76.
    Babu R, Karikari IO, Owens TR, Bagley CA (2014) Spinal cord astrocytomas: a modern 20-year experience at a single institution. Spine 39:533–540.  https://doi.org/10.1097/BRS.0000000000000190 PubMedCrossRefGoogle Scholar
  77. 77.
    Cooper PR (1989) Outcome after operative treatment of intramedullary spinal cord tumors in adults: intermediate and long-term results in 51 patients. Neurosurgery 25:855–859PubMedCrossRefGoogle Scholar
  78. 78.
    Cristante L, Herrmann HD (1994) Surgical management of intramedullary spinal cord tumors: functional outcome and sources of morbidity. Neurosurgery 35:69–74 discussion 74-66PubMedCrossRefGoogle Scholar
  79. 79.
    Ardeshiri A, Chen B, Hutter BO et al (2013) Intramedullary spinal cord astrocytomas: the influence of localization and tumor extension on resectability and functional outcome. Acta Neurochir 155:1203–1207.  https://doi.org/10.1007/s00701-013-1762-5 PubMedCrossRefGoogle Scholar
  80. 80.
    Sandalcioglu IE, Gasser T, Wiedemayer H, Horsch S, Stolke D (2002) Favourable outcome after biopsy and decompression of a holocord intramedullary spinal cord astrocytoma in a newborn. Eur J Paediatr Neurol : EJPN : Off J Eur Paediatr Neurol Soc 6:179–182CrossRefGoogle Scholar
  81. 81.
    Chacko AG, Chandy MJ (2000) Favorable outcome after radical excision of a ‘Holocord’ astrocytoma. Clin Neurol Neurosurg 102:240–242PubMedCrossRefGoogle Scholar
  82. 82.
    Elsberg CA, Beer, E. (1911) The operability of intramedullary tumors of the spinal cord. A report of two operations, with remarks upon the extrusion of intraspinal tumors. Am J Med Sci: 636–647Google Scholar
  83. 83.
    Tobias ME, McGirt MJ, Chaichana KL et al (2008) Surgical management of long intramedullary spinal cord tumors. Child's Nervous system : ChNS : Off J Int Soc Pediatric Neurosurg 24:219–223.  https://doi.org/10.1007/s00381-007-0405-7 CrossRefGoogle Scholar
  84. 84.
    Ebner FH, Schittenhelm J, Roser F, Scheel-Walter H, Tatagiba M, Schuhmann MU (2012) Management of holocord pilocytic astrocytomas in children and adolescents: an update. Pediatr Neurosurg 48:133–140.  https://doi.org/10.1159/000345593 PubMedCrossRefGoogle Scholar
  85. 85.
    Kim TY, Yoon DH, Shin HC et al (2012) Spinal cord hemangioblastomas in von Hippel-Lindau disease: management of asymptomatic and symptomatic tumors. Yonsei Med J 53:1073–1080.  https://doi.org/10.3349/ymj.2012.53.6.1073 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yang C, Li G, Fang J et al (2014) Intramedullary gangliogliomas: clinical features, surgical outcomes, and neuropathic scoliosis. J Neuro-Oncol 116:135–143.  https://doi.org/10.1007/s11060-013-1267-3 CrossRefGoogle Scholar
  87. 87.
    Elavarasi A, Dash D, Warrier AR et al (2018) Spinal cord involvement in primary CNS lymphoma. J Clin Neurosc : Off J Neurosurg Soc Australas 47:145–148.  https://doi.org/10.1016/j.jocn.2017.10.027 CrossRefGoogle Scholar
  88. 88.
    Tan LA, Kasliwal MK, Mhanna N, Fontes RB, Traynelis VC (2014) Surgical resection of subependymoma of the cervical spinal cord. Neurosurgical Focus 37(Suppl 2):Video 3.  https://doi.org/10.3171/2014.V3.FOCUS14258 PubMedCrossRefGoogle Scholar
  89. 89.
    Sharma S, Sarkar C, Gaikwad S, Suri A, Sharma MC (2005) Primary neurocytoma of the spinal cord: a case report and review of literature. J Neuro-Oncol 74:47–52.  https://doi.org/10.1007/s11060-004-3348-9 CrossRefGoogle Scholar
  90. 90.
    Kim JE, Lim M (2015) Neurocytoma of the spinal cord. Neurosurg Clin N Am 26:109–115.  https://doi.org/10.1016/j.nec.2014.09.005 PubMedCrossRefGoogle Scholar
  91. 91.
    Strickland BA, McCutcheon IE, Chakrabarti I, Rhines LD, Weinberg JS (2018) The surgical treatment of metastatic spine tumors within the intramedullary compartment. J Neurosurg Spine 28:79–87.  https://doi.org/10.3171/2017.5.SPINE161161 PubMedCrossRefGoogle Scholar
  92. 92.
    Costa P, Peretta P, Faccani G (2013) Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section Cervical Spine Res Soc 22:840–848.  https://doi.org/10.1007/s00586-012-2576-5 CrossRefGoogle Scholar
  93. 93.
    Angevine PD, Kellner C, Haque RM, McCormick PC (2011) Surgical management of ventral intradural spinal lesions. J Neurosurg Spine 15:28–37.  https://doi.org/10.3171/2011.3.SPINE1095 PubMedCrossRefGoogle Scholar
  94. 94.
    Ottenhausen M, Krieg SM, Meyer B, Ringel F (2015) Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 38:E3.  https://doi.org/10.3171/2014.10.FOCUS14611 PubMedCrossRefGoogle Scholar
  95. 95.
    Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41:1327–1336PubMedCrossRefGoogle Scholar
  96. 96.
    Yamamoto T, Katayama Y, Nagaoka T, Kobayashi K, Fukaya C (2004) Intraoperative monitoring of the corticospinal motor evoked potential (D-wave): clinical index for postoperative motor function and functional recovery. Neurol Med Chir 44:170–180 discussion 181-172CrossRefGoogle Scholar
  97. 97.
    Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119:248–264.  https://doi.org/10.1016/j.clinph.2007.09.135 PubMedCrossRefGoogle Scholar
  98. 98.
    Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:e1PubMedCrossRefGoogle Scholar
  99. 99.
    Cheng JS, Ivan ME, Stapleton CJ, Quinones-Hinojosa A, Gupta N, Auguste KI (2014) Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. J Neurosurg Pediatr 13:591–599.  https://doi.org/10.3171/2014.2.PEDS1392 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kelleher MO, Tan G, Sarjeant R, Fehlings MG (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine 8:215–221.  https://doi.org/10.3171/SPI/2008/8/3/215 PubMedCrossRefGoogle Scholar
  101. 101.
    Forster MT, Marquardt G, Seifert V, Szelenyi A (2012) Spinal cord tumor surgery—importance of continuous intraoperative neurophysiological monitoring after tumor resection. Spine 37:E1001–E1008.  https://doi.org/10.1097/BRS.0b013e31824c76a8 PubMedCrossRefGoogle Scholar
  102. 102.
    Tsuda K, Akutsu H, Yamamoto T, Nakai K, Ishikawa E, Matsumura A (2014) Is Simpson grade I removal necessary in all cases of spinal meningioma? Assessment of postoperative recurrence during long-term follow-up. Neurol Med Chir 54:907–913CrossRefGoogle Scholar
  103. 103.
    Kim CH, Chung CK, Lee SH et al (2016) Long-term recurrence rates after the removal of spinal meningiomas in relation to Simpson grades. Euro Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section of the Cervical Spine Res Soc 25:4025–4032.  https://doi.org/10.1007/s00586-015-4306-2 CrossRefGoogle Scholar
  104. 104.
    Castillo M, Quencer RM, Green BA, Montalvo BM (1988) Syringomyelia as a consequence of compressive extramedullary lesions: postoperative clinical and radiological manifestations. AJR Am J Roentgenol 150:391–396.  https://doi.org/10.2214/ajr.150.2.391 PubMedCrossRefGoogle Scholar
  105. 105.
    Nuwer MR, Emerson RG, Galloway G et al (2012) Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials*. J Clin Neurophysiol : Off Publ Am Electroencephalogr Soc 29:101–108.  https://doi.org/10.1097/WNP.0b013e31824a397e CrossRefGoogle Scholar
  106. 106.
    Sala F, Palandri G, Basso E et al (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143; discussion 1129-1143.  https://doi.org/10.1227/01.NEU.0000215948.97195.58 PubMedCrossRefGoogle Scholar
  107. 107.
    Sweeney KJRM, Farell M, Bolger C (2017) Gross total resection rates of grade II/III intramedullary ependymomas using the surgical strategy of en-bloc resection without intra-operative neurophysiological monitoring. Br J Neurosurg 31:363–368CrossRefGoogle Scholar
  108. 108.
    Krzan MDV, Isgum V (1997) Intraoperative neurophysiological mapping of dorsal columns. A new tool in the prevention of surgically induced sensory deficit? Electroendephalogr Clin Neurophysiol 102:37CrossRefGoogle Scholar
  109. 109.
    Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11PubMedCrossRefGoogle Scholar
  110. 110.
    Kothbauer KF (2007) Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiologie clinique = Clin Neurophysiol 37:407–414.  https://doi.org/10.1016/j.neucli.2007.10.003 CrossRefGoogle Scholar
  111. 111.
    Takami T, Yamagata T, Ohata K (2013) Posterolateral sulcus approach for spinal intramedullary tumor of lateral location: technical note. Neurol Med Chir 53:920–927CrossRefGoogle Scholar
  112. 112.
    Kumar A, Deopujari CE, Karmarkar VS (2012) Dorsal root entry zone approach in ventral and eccentric intramedullary tumors: a report of 2 cases. Asian J Neurosurg 7:32–35.  https://doi.org/10.4103/1793-5482.95695 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ogden AT, Feldstein NA, McCormick PC (2008) Anterior approach to cervical intramedullary pilocytic astrocytoma. Case report. J Neurosurg Spine 9:253–257.  https://doi.org/10.3171/SPI/2008/9/9/253 PubMedCrossRefGoogle Scholar
  114. 114.
    Isaacson SR (2000) Radiation therapy and the management of intramedullary spinal cord tumors. J Neuro-Oncol 47:231–238CrossRefGoogle Scholar
  115. 115.
    Hamilton AJ, Lulu BA, Fosmire H, Stea B, Cassady JR (1995) Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 36:311-319Google Scholar
  116. 116.
    Dodd RL, Ryu MR, Kamnerdsupaphon P, Gibbs IC, Chang SD Jr, Adler JR Jr (2006) CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 58:674–685; discussion 674-685.  https://doi.org/10.1227/01.NEU.0000204128.84742.8F PubMedCrossRefGoogle Scholar
  117. 117.
    Marchetti M, De Martin E, Milanesi I, Fariselli L (2013) Intradural extramedullary benign spinal lesions radiosurgery. Medium- to long-term results from a single institution experience. Acta Neurochir 155:1215–1222.  https://doi.org/10.1007/s00701-013-1756-3 PubMedCrossRefGoogle Scholar
  118. 118.
    Bennett EE, Berriochoa C, Habboub G, Brigeman S, Chao ST, Angelov L (2017) Rapid and complete radiological resolution of an intradural cervical cord lung cancer metastasis treated with spinal stereotactic radiosurgery: case report. Neurosurg Focus 42:E10.  https://doi.org/10.3171/2016.9.FOCUS16254 PubMedCrossRefGoogle Scholar
  119. 119.
    Gerszten PC, Burton SA, Ozhasoglu C, McCue KJ, Quinn AE (2008) Radiosurgery for benign intradural spinal tumors. Neurosurgery 62:887–895; discussion 895-886.  https://doi.org/10.1227/01.neu.0000318174.28461.fc PubMedCrossRefGoogle Scholar
  120. 120.
    Shin DA, Huh R, Chung SS, Rock J, Ryu S (2009) Stereotactic spine radiosurgery for intradural and intramedullary metastasis. Neurosurg Focus 27:E10.  https://doi.org/10.3171/2009.9.FOCUS09194 PubMedCrossRefGoogle Scholar
  121. 121.
    Hernandez-Duran S, Hanft S, Komotar RJ, Manzano GR (2016) The role of stereotactic radiosurgery in the treatment of intramedullary spinal cord neoplasms: a systematic literature review. Neurosurg Rev 39:175–183; discussion 183.  https://doi.org/10.1007/s10143-015-0654-y PubMedCrossRefGoogle Scholar
  122. 122.
    Monserrate A, Zussman B, Ozpinar A, Niranjan A, Flickinger JC, Gerszten PC (2017) Stereotactic radiosurgery for intradural spine tumors using cone-beam CT image guidance. Neurosurg Focus 42:E11.  https://doi.org/10.3171/2016.9.FOCUS16356 PubMedCrossRefGoogle Scholar
  123. 123.
    Saraceni C, Ashman JB, Harrop JS (2009) Extracranial radiosurgery—applications in the management of benign intradural spinal neoplasms. Neurosurg Rev 32:133–140; discussion 140-131.  https://doi.org/10.1007/s10143-008-0183-z PubMedCrossRefGoogle Scholar
  124. 124.
    Harel R, Pfeffer R, Levin D et al (2017) Spine radiosurgery: lessons learned from the first 100 treatment sessions. Neurosurg Focus 42:E3.  https://doi.org/10.3171/2016.9.FOCUS16332 PubMedCrossRefGoogle Scholar
  125. 125.
    Yamada Y, Katsoulakis E, Laufer I et al (2017) The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus 42:E6.  https://doi.org/10.3171/2016.9.FOCUS16369 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sharma M, Bennett EE, Rahmathulla G et al (2017) Impact of cervicothoracic region stereotactic spine radiosurgery on adjacent organs at risk. Neurosurg Focus 42:E14.  https://doi.org/10.3171/2016.10.FOCUS16364 PubMedCrossRefGoogle Scholar
  127. 127.
    Goyal S, Puri T, Julka PK (2015) Holocord low grade astrocytoma—role of radical irradiation and chemotherapy. J Egyp Nat Cancer Instit 27:105–108.  https://doi.org/10.1016/j.jnci.2015.01.001 CrossRefGoogle Scholar
  128. 128.
    Mehta AI, Adogwa O, Karikari IO et al (2013) Anatomical location dictating major surgical complications for intradural extramedullary spinal tumors: a 10-year single-institutional experience. J Neurosurg Spine 19:701–707.  https://doi.org/10.3171/2013.9.SPINE12913 PubMedCrossRefGoogle Scholar
  129. 129.
    Slin'ko EI, Al Q II (2004) Intradural ventral and ventrolateral tumors of the spinal cord: surgical treatment and results. Neurosurg Focus 17:ECP2PubMedCrossRefGoogle Scholar
  130. 130.
    Ahn DK, Park HS, Choi DJ, Kim KS, Kim TW, Park SY (2009) The surgical treatment for spinal intradural extramedullary tumors. Clin Orthop Surg 1:165–172.  https://doi.org/10.4055/cios.2009.1.3.165 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ebner FH, Roser F, Falk M, Hermann S, Honegger J, Tatagiba M (2010) Management of intramedullary spinal cord lesions: interdependence of the longitudinal extension of the lesion and the functional outcome. Eur Spine J : Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Section of the Cervical Spine Res Soc 19:665–669.  https://doi.org/10.1007/s00586-009-1232-1 CrossRefGoogle Scholar
  132. 132.
    Xiao R, Miller JA, Abdullah KG, Lubelski D, Mroz TE, Benzel EC (2016) Quality of life outcomes following resection of adult intramedullary spinal cord tumors. Neurosurgery 78:821–828.  https://doi.org/10.1227/NEU.0000000000001147 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryVivantes Klinikum NeuköllnBerlinGermany
  2. 2.The Feinstein Institute for Medical ResearchManhassetUSA
  3. 3.Department of Radiology and NeuroradiologySchlossparkklinikBerlinGermany
  4. 4.Department of NeurosurgeryLenox Hill HospitalNew YorkUSA

Personalised recommendations