Neurosurgical Review

, Volume 39, Issue 1, pp 1–11 | Cite as

A systematic review of the use of expandable cages in the cervical spine

  • Benjamin D. ElderEmail author
  • Sheng-Fu Lo
  • Thomas A. Kosztowski
  • C. Rory Goodwin
  • Ioan A Lina
  • John E. Locke
  • Timothy F. Witham


Expandable vertebral body replacement cages (VBRs) have been widely used for reconstruction of the thoracolumbar spine following corpectomy. However, their use in the cervical spine is less common, and currently, no expandable cages on the market are cleared or approved by the US Food and Drug Administration for use in the cervical spine. The objective of this study was to perform a systematic review on the use of expandable cages in the treatment of cervical spine pathology with a focus on fusion rates, deformity correction, complications, and indications. A comprehensive Medline search was performed, and 24 applicable articles were identified and included in this review. The advantages of expandable cages include greater ease of implantation with less risk of damage to the end plate, less intraoperative manipulation of the device, and potentially greater control over lordosis. They may be particularly advantageous in cases with poor bone quality, such as patients with osteoporosis or metastatic tumors that have been radiated. However, there is a potential risk of overdistraction, which is increased in the cervical spine, their minimum height limits their use in cases with collapsed vertebra, and the amount of hardware in the expansion mechanism may limit the surface area available for fusion. The use of expandable VBRs are a valuable tool in the armamentarium for reconstruction of the anterior column of the cervical spine with an acceptable safety profile. Although expandable cervical cages are clearly beneficial in certain clinical situations, widespread use following all corpectomies is not justified due to their significantly greater cost compared to structural bone grafts or non-expandable VBRs, which can be utilized to achieve similar clinical outcomes.


Expandable cage Vertebral body replacement Supplemental fixation Cervical corpectomy Biomechanics 


Compliance with ethical standards

**This manuscript reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Conflict of interest

Benjamin Elder has no conflict of interest.

Sheng-Fu Lo has no conflict of interest.

Thomas Kosztowski has no conflict of interest.

C. Rory Goodwin has no conflict of interest.

Timothy F. Witham receives research support from Eli Lilly & Co, The Johns Hopkins Neurological Pain Research Institute, and the Gordon and Marilyn Macklin Foundation.


  1. 1.
    Alfieri A, Gazzeri R, Neroni M, Fiore C, Galarza M, Esposito S (2011) Anterior expandable cylindrical cage reconstruction after cervical spinal metastasis resection. Clin Neurol Neurosurg 113(10):914–917. doi: 10.1016/j.clineuro.2011.02.023 PubMedCrossRefGoogle Scholar
  2. 2.
    Arts MP, Peul WC (2008) Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery 63(3):537–544. doi: 10.1227/01.NEU.0000325260.00628.DC, discussion 544–535 PubMedCrossRefGoogle Scholar
  3. 3.
    Auguste KI, Chin C, Acosta FL, Ames CP (2006) Expandable cylindrical cages in the cervical spine: a review of 22 cases. J Neurosurg Spine 4(4):285–291. doi: 10.3171/spi.2006.4.4.285 PubMedCrossRefGoogle Scholar
  4. 4.
    Ayhan S, Palaoglu S, Geyik S, Saatci I, Onal MB (2014) Concomitant intramedullary arteriovenous malformation and a vertebral hemangioma of cervical spine discovered by a pathologic fracture during bicycle accident. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc. doi: 10.1007/s00586-014-3620-4 Google Scholar
  5. 5.
    Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15(9):633–648CrossRefGoogle Scholar
  6. 6.
    Burkett CJ, Baaj AA, Dakwar E, Uribe JS (2012) Use of titanium expandable vertebral cages in cervical corpectomy. J Clin Neurosci Off J Neurosurg Soc Australas 19(3):402–405. doi: 10.1016/j.jocn.2011.07.030 Google Scholar
  7. 7.
    Cabraja M, Abbushi A, Koeppen D, Kroppenstedt S, Woiciechowsky C (2010) Comparison between anterior and posterior decompression with instrumentation for cervical spondylotic myelopathy: sagittal alignment and clinical outcome. Neurosurg Focus 28(3):E15. doi: 10.3171/2010.1.FOCUS09253 PubMedCrossRefGoogle Scholar
  8. 8.
    Cabraja M, Abbushi A, Kroppenstedt S, Woiciechowsky C (2010) Cages with fixation wings versus cages plus plating for cervical reconstruction after corpectomy—is there any difference? Cen Eur Neurosurg 71(2):59–63. doi: 10.1055/s-0029-1246135 CrossRefGoogle Scholar
  9. 9.
    Chou D, Lu DC, Weinstein P, Ames CP (2008) Adjacent-level vertebral body fractures after expandable cage reconstruction. J Neurosurg Spine 8(6):584–588. doi: 10.3171/SPI/2008/8/6/584 PubMedCrossRefGoogle Scholar
  10. 10.
    Coumans JV, Marchek CP, Henderson FC (2002) Use of the telescopic plate spacer in treatment of cervical and cervicothoracic spine tumors. Neurosurgery 51(2):417–424, discussion 424–416 PubMedGoogle Scholar
  11. 11.
    Cusick JF, Yoganandan N (2002) Biomechanics of the cervical spine 4: major injuries. Clin Biomech 17(1):1–20CrossRefGoogle Scholar
  12. 12.
    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. doi: 10.1016/j.injury.2011.06.015 PubMedCrossRefGoogle Scholar
  13. 13.
    Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD (2011) Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Sect Cervical Spine Res Soc 20(8):1363–1370. doi: 10.1007/s00586-011-1738-1 CrossRefGoogle Scholar
  14. 14.
    Eleraky MA, Duong HT, Esp E, Kim KD (2011) Expandable versus nonexpandable cages for thoracolumbar burst fracture. World Neurosurg 75(1):149–154. doi: 10.1016/j.wneu.2010.09.018 PubMedCrossRefGoogle Scholar
  15. 15.
    Epstein NE (2012) Iliac crest autograft versus alternative constructs for anterior cervical spine surgery: Pros, cons, and costs. Surg Neurol Int 3(Suppl 3):S143–S156. doi: 10.4103/2152-7806.98575 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Han YC, Liu ZQ, Wang SJ, Li LJ, Tan J (2014) Is anterior cervical discectomy and fusion superior to corpectomy and fusion for treatment of multilevel cervical spondylotic myelopathy? A systemic review and meta-analysis. PLoS One 9(1):e87191. doi: 10.1371/journal.pone.0087191 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hasegawa K, Abe M, Washio T, Hara T (2001) An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine 26(8):957–963PubMedCrossRefGoogle Scholar
  18. 18.
    Heneghan HM, McCabe JP (2009) Use of autologous bone graft in anterior cervical decompression: morbidity & quality of life analysis. BMC Musculoskelet Disord 10:158. doi: 10.1186/1471-2474-10-158 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 7(2):132–141CrossRefGoogle Scholar
  20. 20.
    Kandziora F, Pflugmacher R, Schaefer J, Scholz M, Ludwig K, Schleicher P, Haas NP (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMedGoogle Scholar
  21. 21.
    Kettler A, Wilke HJ, Claes L (2001) Effects of neck movements on stability and subsidence in cervical interbody fusion: an in vitro study. J Neurosurg 94(1 Suppl):97–107PubMedGoogle Scholar
  22. 22.
    Koller H, Schmidt R, Mayer M, Hitzl W, Zenner J, Midderhoff S, Graf N, Resch H, Wilke HJ (2010) The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 19(12):2137–2148. doi: 10.1007/s00586-010-1503-x CrossRefGoogle Scholar
  23. 23.
    Konig SA, Spetzger U (2014) Distractable titanium cages versus PEEK cages versus iliac crest bone grafts for the replacement of cervical vertebrae. Minim Invasive Ther Allied Technol MITAT Off J Soc Minim Invasive Ther 23(2):102–105. doi: 10.3109/13645706.2013.854809 CrossRefGoogle Scholar
  24. 24.
    Konig SA, Spetzger U (2014) Experience with a modular PEEK system for cervical vertebral body replacement. J Spinal Disord Tech. doi: 10.1097/BSD.0000000000000149 Google Scholar
  25. 25.
    Lau D, Song Y, Guan Z, La Marca F, Park P (2013) Radiological outcomes of static vs expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence. Neurosurgery 72(4):529–539. doi: 10.1227/NEU.0b013e318282a558, discussion 528–529 PubMedCrossRefGoogle Scholar
  26. 26.
    Lied B, Roenning PA, Sundseth J, Helseth E (2010) Anterior cervical discectomy with fusion in patients with cervical disc degeneration: a prospective outcome study of 258 patients (181 fused with autologous bone graft and 77 fused with a PEEK cage). BMC Surg 10:10. doi: 10.1186/1471-2482-10-10 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lu DC, Wang V, Chou D (2009) The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 64(1):122–129. doi: 10.1227/01.NEU.0000336332.11957.0B, discussion 129–130 PubMedCrossRefGoogle Scholar
  28. 28.
    Mohammad-Shahi MH, Nikolaou VS, Giannitsios D, Ouellet J, Jarzem PF (2013) The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech 26(5):268–273. doi: 10.1097/BSD.0b013e3182425eab PubMedCrossRefGoogle Scholar
  29. 29.
    Omeis I, Bekelis K, Gregory A, McGirt M, Sciubba D, Bydon A, Wolinsky JP, Gokaslan Z, Witham T (2010) The use of expandable cages in patients undergoing multilevel corpectomies for metastatic tumors in the cervical spine. Orthopedics 33(2):87–92. doi: 10.3928/01477447-20100104-12 PubMedCrossRefGoogle Scholar
  30. 30.
    Payer M (2006) Implantation of a distractible titanium cage after cervical corpectomy: technical experience in 20 consecutive cases. Acta Neurochir 148(11):1173–1180. doi: 10.1007/s00701-006-0871-9, discussion 1180 PubMedCrossRefGoogle Scholar
  31. 31.
    Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 12(4):413–420. doi: 10.1007/s00586-002-0505-8 CrossRefGoogle Scholar
  32. 32.
    Sasani M, Ozer AF (2009) Single-stage posterior corpectomy and expandable cage placement for treatment of thoracic or lumbar burst fractures. Spine 34(1):E33–E40. doi: 10.1097/BRS.0b013e318189fcfd PubMedCrossRefGoogle Scholar
  33. 33.
    Sciubba DM, Gallia GL, McGirt MJ, Woodworth GF, Garonzik IM, Witham T, Gokaslan ZL, Wolinsky JP (2007) Thoracic kyphotic deformity reduction with a distractible titanium cage via an entirely posterior approach. Neurosurgery 60(4 Suppl 2):223–230. doi: 10.1227/01.NEU.0000255385.18335.A8, discussion 230–221 PubMedGoogle Scholar
  34. 34.
    Shen FH, Marks I, Shaffrey C, Ouellet J, Arlet V (2008) The use of an expandable cage for corpectomy reconstruction of vertebral body tumors through a posterior extracavitary approach: a multicenter consecutive case series of prospectively followed patients. Spine J Off J N Am Spine So 8(2):329–339. doi: 10.1016/j.spinee.2007.05.002 CrossRefGoogle Scholar
  35. 35.
    Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine 28(20):2352–2358. doi: 10.1097/01.BRS.0000085344.22471.23, discussion 2358 PubMedCrossRefGoogle Scholar
  36. 36.
    Thongtrangan I, Balabhadra RS, Le H, Park J, Kim DH (2003) Vertebral body replacement with an expandable cage for reconstruction after spinal tumor resection. Neurosurg Focus 15(5):E8PubMedCrossRefGoogle Scholar
  37. 37.
    Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA, Singh K, Garfin SR (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11(5):410–415PubMedCrossRefGoogle Scholar
  38. 38.
    Viswanathan A, Abd-El-Barr MM, Doppenberg E, Suki D, Gokaslan Z, Mendel E, Rao G, Rhines LD (2012) Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 21(1):84–92. doi: 10.1007/s00586-011-1882-7 CrossRefGoogle Scholar
  39. 39.
    Waschke A, Kaczor S, Walter J, Duenisch P, Kalff R, Ewald C (2013) Expandable titanium cages for anterior column cervical reconstruction and their effect on sagittal profile: a review of 48 cases. Acta Neurochir 155(5):801–807. doi: 10.1007/s00701-013-1655-7, discussion 807 PubMedCrossRefGoogle Scholar
  40. 40.
    Waschke A, Walter J, Duenisch P, Kalff R, Ewald C (2013) Anterior cervical intercorporal fusion in patients with osteoporotic or tumorous fractures using a cement augmented cervical plate system: first results of a prospective single-center study. J Spinal Disord Tech 26(3):E112–E117. doi: 10.1097/BSD.0b013e3182764b37 PubMedCrossRefGoogle Scholar
  41. 41.
    Wilke HJ, Kettler A, Goetz C, Claes L (2000) Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage. Spine 25(21):2762–2770PubMedCrossRefGoogle Scholar
  42. 42.
    Woiciechowsky C (2005) Distractable vertebral cages for reconstruction after cervical corpectomy. Spine 30(15):1736–1741PubMedCrossRefGoogle Scholar
  43. 43.
    Xiao SW, Jiang H, Yang LJ, Xiao ZM (2014) Anterior cervical discectomy versus corpectomy for multilevel cervical spondylotic myelopathy: a meta-analysis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc. doi: 10.1007/s00586-014-3607-1 Google Scholar
  44. 44.
    Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances A Jr, Walsh PR (1996) Human head-neck biomechanics under axial tension. Med Eng Phys 18(4):289–294PubMedCrossRefGoogle Scholar
  45. 45.
    Zairi F, Aboukais R, Thines L, Allaoui M, Assaker R (2012) Relevance of expandable titanium cage for the treatment of cervical spondylotic myelopathy. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 21(8):1545–1550. doi: 10.1007/s00586-012-2380-2 CrossRefGoogle Scholar
  46. 46.
    Zhang HY, Thongtrangan I, Le H, Park J, Kim DH (2005) Expandable cage for cervical spine reconstruction. J Kor Neurosurg Soc 38:435–441Google Scholar
  47. 47.
    Zhang Y, Quan Z, Zhao Z, Luo X, Tang K, Li J, Zhou X, Jiang D (2014) Evaluation of anterior cervical reconstruction with titanium mesh cages versus nano-hydroxyapatite/polyamide66 cages after 1- or 2-level corpectomy for multilevel cervical spondylotic myelopathy: a retrospective study of 117 patients. PLoS One 9(5):e96265. doi: 10.1371/journal.pone.0096265 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benjamin D. Elder
    • 1
    Email author
  • Sheng-Fu Lo
    • 1
  • Thomas A. Kosztowski
    • 1
  • C. Rory Goodwin
    • 1
  • Ioan A Lina
    • 1
  • John E. Locke
    • 1
  • Timothy F. Witham
    • 1
  1. 1.Department of NeurosurgeryThe Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations