Advertisement

Neurosurgical Review

, Volume 38, Issue 2, pp 293–307 | Cite as

Surgical results of tumor resection using tractography-integrated navigation-guided fence-post catheter techniques and motor-evoked potentials for preservation of motor function in patients with glioblastomas near the pyramidal tracts

  • Shiro Ohue
  • Shohei Kohno
  • Akihiro Inoue
  • Daisuke Yamashita
  • Shirabe Matsumoto
  • Satoshi Suehiro
  • Yoshiaki Kumon
  • Keiichi Kikuchi
  • Takanori Ohnishi
Original Article

Abstract

The current optimal surgery for glioblastomas (GBMs) near the pyramidal tract (PT) is to remove as much tumor as possible and to preserve motor function. The purpose of this study is to investigate the usefulness of tractography-integrated navigation-guided fence-post catheter techniques and motor-evoked potentials (MEPs) for preserving postoperative motor function after GBM surgery. We retrospectively examined 49 patients who underwent resection for GBM near the PT. Diffusion tensor (DT) imaging-based tractography of the PT was performed preoperatively and integrated into the navigation system. When possible, silicon catheters were used as “fence-posts” and were inserted along the tumor boundaries, avoiding the PT, before tumor removal using the navigation system (fence-post catheter techniques). Cortical and subcortical MEPs were also monitored during resection of the tumor. Fence-post catheter techniques using a tractography-integrated navigation system were used in 45 of 49 patients. This technique enabled placement of the catheters, avoided the motor pathways, and allowed easier resection of the tumors. Tumors near the PT were resected using subcortical and cortical MEPs. The amplitudes of cortical MEPs after tumor removal were maintained at over 33 % of those obtained before resection. Thirty-six patients showed obvious responses of subcortical MEPs at ≤20 mA. The degree of resection was gross total in 21 patients, subtotal in 21, and partial in seven. One month after surgery, only one patient showed worsened motor function. Therefore, fence-post catheter techniques using a tractography-integrated navigation system and MEPs may contribute to preserving motor function after surgery for GBMs that are near the PT.

Keywords

Glioblastoma Motor-evoked potential Navigation Tractography Pyramidal tract 

Notes

Conflict of interest

The authors have no personal financial or institutional interest in any of the drugs, materials, or devices described in this article.

References

  1. 1.
    Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, Giussani C, Cadioli M, Blasi V, Casarotti A, Papagno C, Gupta AK, Gaini S, Scotti G, Falini A (2008) Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39(1):369–382. doi: 10.1016/j.neuroimage.2007.08.031 CrossRefPubMedGoogle Scholar
  2. 2.
    Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107(3):488–494. doi: 10.3171/JNS-07/09/0488 CrossRefPubMedGoogle Scholar
  3. 3.
    Berman JI, Berger MS, Mukherjee P, Henry RG (2004) Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101(1):66–72. doi: 10.3171/jns.2004.101.1.0066 CrossRefPubMedGoogle Scholar
  4. 4.
    Brell M, Ibanez J, Caral L, Ferrer E (2000) Factors influencing surgical complications of intra-axial brain tumours. Acta Neurochir 142(7):739–750CrossRefPubMedGoogle Scholar
  5. 5.
    Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. J Neurosurg 114(3):566–573. doi: 10.3171/2010.6.jns091246 CrossRefPubMedGoogle Scholar
  6. 6.
    Coenen VA, Krings T, Axer H, Weidemann J, Kränzlein H, Hans F-J, Thron A, Gilsbach JM, Rohde V (2003) Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways. Surg Neurol 60(5):381–390. doi: 10.1016/s0090-3019(03)00392-6 CrossRefPubMedGoogle Scholar
  7. 7.
    Deletis V (1993) Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol 63:201–214PubMedGoogle Scholar
  8. 8.
    Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88(4):656–662. doi: 10.3171/jns.1998.88.4.0656 CrossRefPubMedGoogle Scholar
  9. 9.
    Duffau H (2007) Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin = Clin Neurophysiol 37(6):373–382. doi: 10.1016/j.neucli.2007.09.003 CrossRefGoogle Scholar
  10. 10.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76(6):845–851. doi: 10.1136/jnnp.2004.048520 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Eisner W, Burtscher J, Bale R, Sweeney R, Koppelstatter F, Golaszewski S, Kolbitsch C, Twerdy K (2002) Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. J Neurol Neurosurg Psychiatry 72(3):378–381CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357. doi: 10.3171/2009.10.jns09447 CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes F, Quilis V, Cortes V, Garcia-March G, Roldan P (2010) Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus 28(2):E5. doi: 10.3171/2009.11.FOCUS09234 CrossRefPubMedGoogle Scholar
  14. 14.
    Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104, discussion 104–105CrossRefPubMedGoogle Scholar
  15. 15.
    Hendler T, Pianka P, Sigal M, Kafri M, Ben-Bashat D, Constantini S, Graif M, Fried I, Assaf Y (2003) Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J Neurosurg 99(6):1018–1027. doi: 10.3171/jns.2003.99.6.1018 CrossRefPubMedGoogle Scholar
  16. 16.
    Kajiwara K, Yoshikawa K, Ideguchi M, Nomura S, Fujisawa H, Akimura T, Kato S, Fujii M, Suzuki M (2010) Navigation-guided fence-post tube technique for resection of a brain tumor: technical note. Minim Invasive Neurosurg : MIN 53(2):86–90. doi: 10.1055/s-0030-1249053 CrossRefPubMedGoogle Scholar
  17. 17.
    Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A (2005) Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg 102(4):664–672. doi: 10.3171/jns.2005.102.4.0664 CrossRefPubMedGoogle Scholar
  18. 18.
    Kamada K, Todo T, Ota T, Ino K, Masutani Y, Aoki S, Takeuchi F, Kawai K, Saito N (2009) The motor-evoked potential threshold evaluated by tractography and electrical stimulation. J Neurosurg 111(4):785–795. doi: 10.3171/2008.9.JNS08414 CrossRefPubMedGoogle Scholar
  19. 19.
    Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100(3):369–375. doi: 10.3171/jns.2004.100.3.0369 CrossRefPubMedGoogle Scholar
  20. 20.
    Kombos T, Picht T, Derdilopoulos A, Suess O (2009) Impact of intraoperative neurophysiological monitoring on surgery of high-grade gliomas. J Clin Neurophysiol : Off Publ Am Electroencephalogr Soc 26(6):422–425. doi: 10.1097/WNP.0b013e3181c2c0dc CrossRefGoogle Scholar
  21. 21.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. doi: 10.3171/jns.2001.95.2.0190 CrossRefPubMedGoogle Scholar
  22. 22.
    Lazar M, Alexander AL (2003) An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. Neuroimage 20(2):1140–1153. doi: 10.1016/s1053-8119(03)00277-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Macdonald DB, Skinner S, Shils J, Yingling C (2013) Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol : Off J Int Fed Clin Neurophysiol 124(12):2291–2316. doi: 10.1016/j.clinph.2013.07.025 CrossRefGoogle Scholar
  24. 24.
    Maciunas R, Hill J, Alexander E (1999) Stereotactic frame-based guidance of craniotomy: Cosman-Roberts-Wells system. In: Alexander E, Maciunas R (eds) Advanced neurosurgical navigation. Thieme, New york, pp 289–300Google Scholar
  25. 25.
    Maesawa S, Fujii M, Nakahara N, Watanabe T, Wakabayashi T, Yoshida J (2010) Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg 74(1):153–161. doi: 10.1016/j.wneu.2010.03.022 CrossRefPubMedGoogle Scholar
  26. 26.
    McDonald JD, Chong BW, Lewine JD, Jones G, Burr RB, McDonald PR, Koehler SB, Tsuruda J, Orrison WW, Heilbrun MP (1999) Integration of preoperative and intraoperative functional brain mapping in a frameless stereotactic environment for lesions near eloquent cortex. Technical note. J Neurosurg 90(3):591–598. doi: 10.3171/jns.1999.90.3.0591 CrossRefPubMedGoogle Scholar
  27. 27.
    McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110(1):156–162. doi: 10.3171/2008.4.17536 CrossRefPubMedGoogle Scholar
  28. 28.
    McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469. doi: 10.1227/01.NEU.0000349763.42238.E9, discussion 469–470CrossRefPubMedGoogle Scholar
  29. 29.
    MedicalResearchCouncil (1943) Aids to the investigation of peripheral nerve injuries (2nd edition), 2nd edn. Her Majesty’s Stationery Office, LondonGoogle Scholar
  30. 30.
    Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S, Kikuta K, Takahashi JA, Nozaki K, Fukuyama H, Hashimoto N (2007) Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg 106(4):593–598. doi: 10.3171/jns.2007.106.4.593 CrossRefPubMedGoogle Scholar
  31. 31.
    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269CrossRefPubMedGoogle Scholar
  32. 32.
    Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54(5):1061–1072. doi: 10.1227/01.neu.0000119326.15032.00 CrossRefPubMedGoogle Scholar
  33. 33.
    Neuloh G, Pechstein U, Cedzich C, Schramm J (2007) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 61(1 Suppl):337–346. doi: 10.1227/01.neu.0000279227.50826.6c, discussion 346–338PubMedGoogle Scholar
  34. 34.
    Neuloh G, Schramm J (2004) Motor evoked potential monitoring for the surgery of brain tumours and vascular malformations. Adv Tech Stand Neurosurg 29:171–228PubMedGoogle Scholar
  35. 35.
    Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56(1):130–137, discussion 138PubMedGoogle Scholar
  36. 36.
    Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114(3):738–746. doi: 10.3171/2010.8.JNS10639 CrossRefPubMedGoogle Scholar
  37. 37.
    Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, Kikuchi K, Miki H, Ohnishi T (2012) Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70(2):283–293. doi: 10.1227/NEU.0b013e31823020e6, discussion 294CrossRefPubMedGoogle Scholar
  38. 38.
    Ohue S, Kohno S, Kumon Y, Ohnishi T (2014) Diffusion tensor magnetic resonance imaging-based tractography for glioma surgery. Tumors Cent Nerv Syst 11:51–62CrossRefGoogle Scholar
  39. 39.
    Ohue S, Kumon Y, Nagato S, Kohno S, Harada H, Nakagawa K, Kikuchi K, Miki H, Ohnishi T (2010) Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir 50(4):291–300CrossRefGoogle Scholar
  40. 40.
    Roux FE, Boulanouar K, Ranjeva JP, Tremoulet M, Henry P, Manelfe C, Sabatier J, Berry I (1999) Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir 141(1):71–79CrossRefPubMedGoogle Scholar
  41. 41.
    Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47(2):79–88PubMedGoogle Scholar
  42. 42.
    Samset E, Hogetveit JO, Cate GT, Hirschberg H (2005) Integrated neuronavigation system with intraoperative image updating. Minim Invasive Neurosurg : MIN 48(2):73–76. doi: 10.1055/s-2004-830224 CrossRefPubMedGoogle Scholar
  43. 43.
    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8. doi: 10.3171/2011.2.JNS10998 CrossRefPubMedGoogle Scholar
  44. 44.
    Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A (2013) The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 118(2):287–296. doi: 10.3171/2012.10.JNS12895 CrossRefPubMedGoogle Scholar
  45. 45.
    Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, Buchfelder M, Moser E, Ernst-Stecken A, Ganslandt O (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34(3):949–956. doi: 10.1016/j.neuroimage.2006.08.051 CrossRefPubMedGoogle Scholar
  46. 46.
    Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576. doi: 10.1227/01.neu.0000317304.31579.17, discussion 564–576CrossRefPubMedGoogle Scholar
  47. 47.
    Szelenyi A, Hattingen E, Weidauer S, Seifert V, Ziemann U (2010) Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery 67(2):302–313. doi: 10.1227/01.neu.0000371973.46234.46 CrossRefPubMedGoogle Scholar
  48. 48.
    Wang YX, Zhu XL, Deng M, Siu DY, Leung JC, Chan Q, Chan DT, Mak CH, Poon WS (2010) The use of diffusion tensor tractography to measure the distance between the anterior tip of the Meyer loop and the temporal pole in a cohort from Southern China. J Neurosurg 113(6):1144–1151. doi: 10.3171/2010.7.jns10393 CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshikawa K, Kajiwara K, Morioka J, Fujii M, Tanaka N, Fujisawa H, Kato S, Nomura SM (2006) Improvement of functional outcome after radical surgery in glioblastoma patients: the efficacy of a navigation-guided fence-post procedure and neurophysiological monitoring. J Neurooncol 78(1):91–97. doi: 10.1007/s11060-005-9064-2 CrossRefPubMedGoogle Scholar
  50. 50.
    Zhu FP, Wu JS, Song YY, Yao CJ, Zhuang DX, Xu G, Tang WJ, Qin ZY, Mao Y, Zhou LF (2012) Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71(6):1170–1183. doi: 10.1227/NEU.0b013e318271bc61, discussion 1183–1174CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shiro Ohue
    • 1
  • Shohei Kohno
    • 1
  • Akihiro Inoue
    • 1
  • Daisuke Yamashita
    • 1
  • Shirabe Matsumoto
    • 1
  • Satoshi Suehiro
    • 1
  • Yoshiaki Kumon
    • 1
  • Keiichi Kikuchi
    • 1
    • 2
  • Takanori Ohnishi
    • 1
  1. 1.Departments of NeurosurgeryEhime University Graduate School of MedicineToonJapan
  2. 2.Department of RadiologyEhime University Graduate School of MedicineToonJapan

Personalised recommendations