Neurosurgical Review

, Volume 38, Issue 2, pp 239–244 | Cite as

DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review

  • David HozaEmail author
  • Aleš Vlasák
  • Daniel Hořínek
  • Martin Sameš
  • Alex Alfieri


Normal pressure hydrocephalus (NPH) is a clinical syndrome characterized by gait disturbances, urinary incontinence and dementia. Clinical presentation overlaps with Alzheimer disease (AD). Early recognition thus early intervention (shunting) is important for successful treatment, but lack of a diagnostic test with sufficient sensitivity and specificity complicates the diagnosis. We performed literature search and composed a structured review of imaging biomarkers of NPH. Morphometric studies are not sufficient to diagnose NPH. Hydrocephalus is a common finding in elderly people due to the symmetric brain atrophy and is even more pronounced in patients with AD. The key MRI biomarker seems to be diffusion tensor imaging (DTI). According to recent studies, the DTI analysis of the splenium corporis callosi, posterior limb of internal capsule, hippocampus and fornix combined with measurement of Evans index is a promising MRI biomarker of NPH and could be used for NPH diagnostics and in the differential diagnosis from AD and other dementias.


Normal pressure hydrocephalus Diffusion tensor imaging MRI biomarkers Ventriculomegaly 



  1. 1.
    Anderson RC, Grant JJ, de la Paz R, Frucht S, Goodman RR (2002) Volumetric measurements in the detection of reduced ventricular volume in patients with normal pressure hydrocephalus whose clinical condition improved after ventriculoperitoneal shunt placement. J Neurosurg 97:73–79CrossRefPubMedGoogle Scholar
  2. 2.
    Assaf Y, Ben-Sira L, Constantini S, Chang LC, Beni-Adani L (2006) Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:1717–1724PubMedGoogle Scholar
  3. 3.
    Barkovich AJ (2005) Hydrocephalus. In: Barkovich AJ (ed) Pediatric neuroimaging, 3rd edn. Lippincott Williams & Williams, Philadelphia, pp 581–620Google Scholar
  4. 4.
    Bateman GA (2008) The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol 1:198–203CrossRefGoogle Scholar
  5. 5.
    Benzel EC, Pelletier AL, Levy PG (1990) Communicating hydrocephalus in adults: prediction of outcome after ventricular shunting procedures. Neurosurgery 26:655–660CrossRefPubMedGoogle Scholar
  6. 6.
    Brian R, Ott MD, Ronald A, Cohen, Gerald D, Silverberg, MD (2010) Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. J Alzheimers Dis: 20647–65Google Scholar
  7. 7.
    DeVito EE, Pickard JD, Salmond CH, Iddon JL, Loveday C, Sahakian BJ (2005) The neuropsychology of normal pressure hydrocephalus. Br J Neurosurg 19:217–224CrossRefPubMedGoogle Scholar
  8. 8.
    Evans WA (1942) An encephalographic ratio for estimating ventricular and cerebral atrophy. Arch Neurol Psychiatr 47:931–937CrossRefGoogle Scholar
  9. 9.
    Gammal TE, Allen MB Jr, Brooks BS, Mark EK (1987) MR evaluation of hydrocephalus. AJR Am J Roentgenol 149:807–813CrossRefPubMedGoogle Scholar
  10. 10.
    Griffiths PD, Batty R, Reeves MJ, Connolly DJ (2009) Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality. Neuroradiology 51:337–345CrossRefPubMedGoogle Scholar
  11. 11.
    Hashimoto M, Ishikawa M, Mori E, Kuwana N, Study of INPH on neurological improvement (2010) Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 7:18CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hattingen E, Jurcoane A, Melber J, Blasel S, Zanella FE, Neumann-Haefelin T et al (2010) Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 5:917–924CrossRefGoogle Scholar
  13. 13.
    Hattori T, Yuasa T, Aoki S, Sato R, Sawaura H, Mori T et al (2011) Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer disease and Parkinson disease with dementia. AJNR Am J Neuroradiol 9:1681–1687CrossRefGoogle Scholar
  14. 14.
    Hattori T, Sato R, Aoki S, Yuasa T, Mizusawa H (2012) Different patterns of fornix damage in idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol 2:274–279CrossRefGoogle Scholar
  15. 15.
    Hong YJ, Yoon B, Shim YS, Cho AH, Lim SC, Ahn KJ et al (2010) Differences in microstructural alterations of the hippocampus in Alzheimer disease and idiopathic normal pressure hydrocephalus: a diffusion tensor imaging study. AJNR Am J Neuroradiol 10:1867–1872CrossRefGoogle Scholar
  16. 16.
    Ishii K, Kawaguchi T, Shimada K, Ohkawa S, Miyamoto N, Kanda T et al (2008) Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 4:329–335CrossRefGoogle Scholar
  17. 17.
    Kanno S, Abe N, Saito M, Takagi M, Nishio Y, Hayashi A et al (2011) White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. J Neurol 11:1949–1957CrossRefGoogle Scholar
  18. 18.
    Kantarci K, Jack CR, Xu YC, Campeau NG, O’Brien PC et al (2001) Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 219:101–107CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Kim MJ, Seo SW, Lee KM, Kim ST, Lee JI, Nam DH et al (2011) Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol 8:1496–1503CrossRefGoogle Scholar
  20. 20.
    Leinonen V, Alafuzoff I, Aalto S, Suotunen T, Savolainen S, Nagren K et al (2008) Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch Neurol 65:1304–1309CrossRefPubMedGoogle Scholar
  21. 21.
    Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 102:987–997CrossRefPubMedGoogle Scholar
  22. 22.
    Mataro M, Matarin M, Poca MA, Pueyo R, Sahuquillo J, Barrios M et al (2007) Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry 78:395–398CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Mechelli A, Price CJ, Friston KJ, Ashburner J (2005) Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev 1:105–113CrossRefGoogle Scholar
  24. 24.
    Mohapl M, Vanek P, Bradac O, Horinek D, Saur K (2010) Comparison of the benefits of the lumbar infusion test and lumbar drainage in the treatment of hydrocephalus. Cesk Slov Neurol N 1:68–72Google Scholar
  25. 25.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539CrossRefPubMedGoogle Scholar
  26. 26.
    Osuka S, Matsushita A, Yamamoto T, Saotome K, Isobe T, Nagatomo Y et al (2009) Evaluation of ventriculomegaly using diffusion tensor imaging. Correlations with chronic hydrocephalus and atrophy. J Neurosurg 4:832–839Google Scholar
  27. 27.
    Ott BR, Cohen RA, Gongvatana A, Okonkwo OC, Johanson CE, Donahue JE et al (2010) Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. J Alzheimers Dis 2:647–657Google Scholar
  28. 28.
    Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S4–S16PubMedGoogle Scholar
  29. 29.
    Roricht S, Meyer BU, Woiciechowsky C, Lehmann R (1998) Callosal and corticospinal tract function in patients with hydrocephalus: a morphometric and transcranial magnetic stimulation study. J Neurol 245:280–288CrossRefPubMedGoogle Scholar
  30. 30.
    Rose SE, Janke AL, Chalk JB (2008) Gray and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study. J Magn Reson Imaging 27:20–26CrossRefPubMedGoogle Scholar
  31. 31.
    Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H (2008) Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 50:117–122CrossRefPubMedGoogle Scholar
  32. 32.
    Savolainen S, Paljarvi L, Vapalahti M (1999) Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study. Acta Neurochir 141:849–853CrossRefPubMedGoogle Scholar
  33. 33.
    Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111CrossRefPubMedGoogle Scholar
  34. 34.
    Shim YS, Yoon B, Shon Y, Ahn KJ, Yang DW (2008) Difference of the hippocampal and white matter microalterations in MCI patients according to the severity of subcortical vascular changes: neuropsychological correlates of diffusion tensor imaging. Clin Neurol Neurosurg 110:552–561CrossRefPubMedGoogle Scholar
  35. 35.
    Tsunoda A, Mitsuoka H, Bandai H, Arai H, Sato K, Makita J (2001) Intracranial cerebrospinal fluid distribution and its postoperative changes in normal pressure hydrocephalus. Acta Neurochir 143:493–499CrossRefPubMedGoogle Scholar
  36. 36.
    Walchenbach R, Geiger E, Thomeer RT, Vanneste JA (2002) The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 72:503–506PubMedCentralPubMedGoogle Scholar
  37. 37.
    Wikkelsø C, Hellström P, Klinge PM, Tans JT (2013) The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. European iNPH Multicentre Study Group. J Neurol Neurosurg Psychiatry 84:562–568CrossRefPubMedGoogle Scholar
  38. 38.
    Yoshiura T, Noguchi T, Koga H, Ohyagi Y, Hiwatashi A, Togao O et al (2008) Cortical damage in Alzheimer’s disease estimation in medial and lateral aspects of the cerebrum using an improved mapping method based on diffusion-weighted magnetic resonance imaging. Acad Radiol 2:193–200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Hoza
    • 1
    Email author
  • Aleš Vlasák
    • 2
  • Daniel Hořínek
    • 3
  • Martin Sameš
    • 3
  • Alex Alfieri
    • 4
  1. 1.Department of NeurosurgeryHospital DessauDessau-RoßlauGermany
  2. 2.Department of NeurosurgeryUniversity Hospital MotolPragueCzech Republic
  3. 3.Department of NeurosurgeryHospital Ústí nad LabemÚstí nad LabemCzech Republic
  4. 4.Department of NeurosurgeryRuppiner Kliniken GmbHNeuruppinGermany

Personalised recommendations