Neurosurgical Review

, Volume 37, Issue 4, pp 585–595 | Cite as

Nerve repair: toward a sutureless approach

  • Matthew J. Barton
  • John W. Morley
  • Marcus A. Stoodley
  • Antonio. Lauto
  • David A. Mahns


Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.


Photochemical tissue bonding Peripheral nerve repair Nerve conduits Biomaterials Lasers Sutures 



  1. 1.
    Barton AA (1962) An electron microscope study of degeneration and regeneration of nerve. Brain 85:799–808PubMedCrossRefGoogle Scholar
  2. 2.
    Barton M, Morley JW, Stoodley MA, Ng KS, Piller SC, Duong H, Mawad D, Mahns DA, Lauto A (2013) Laser-activated adhesive films for sutureless median nerve anastomosis. J Biophotonics 11-12:938–949CrossRefGoogle Scholar
  3. 3.
    Barton M, Piller SC, Mahns DA, Morley JW, Mawad D, Longo L, Lauto A (2012) In vitro cell compatibility study of rose bengal-chitosan adhesives. Lasers Surg Med 44(9):762–768PubMedCrossRefGoogle Scholar
  4. 4.
    Bass LS, Moazami N, Pocsidio J, Oz MC, LoGerfo P, Treat MR (1992) Changes in type I collagen following laser welding. Lasers Surg Med 12(5):500–505PubMedCrossRefGoogle Scholar
  5. 5.
    Bass LS, Treat MR (1995) Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 17(4):315–349PubMedCrossRefGoogle Scholar
  6. 6.
    Battiston B, Geuna S, Ferrero M, Tos P (2005) Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 25(4):258–267PubMedCrossRefGoogle Scholar
  7. 7.
    Bozzali M, Wrabetz L (2004) Axonal signals and oligodendrocyte differentiation. Neurochem Res 29(5):979–988PubMedCrossRefGoogle Scholar
  8. 8.
    Brosh T, Simhon D, Halpern M, Ravid A, Vasilyev T, Kariv N, Nevo Z, Katzir A (2004) Closure of skin incisions in rabbits by laser soldering II: tensile strength. Lasers Surg Med 35(1):12–17PubMedCrossRefGoogle Scholar
  9. 9.
    Brunelli GA, Vigasio A, Brunelli GR (1994) Different conduits in peripheral nerve surgery. Microsurgery 15(3):176–178PubMedCrossRefGoogle Scholar
  10. 10.
    Causey G, Barton AA (1959) The cellular content of the endoneurium of peripheral nerve. Brain 82:594–598PubMedCrossRefGoogle Scholar
  11. 11.
    Chimutengwende-Gordon M, Khan W (2012) Recent advances and developments in neural repair and regeneration for hand surgery. Open Orthop J 6:103–107PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Choi BH, Kim BY, Huh JY, Lee SH, Zhu SJ, Jung JH, Cho BP (2004) Microneural anastomosis using cyanoacrylate adhesives. Int J Oral Maxillofac Surg 33(8):777–780PubMedCrossRefGoogle Scholar
  13. 13.
    Cooley BC (1996) Heat-induced tissue fusion for microvascular anastomosis. Microsurgery 17(4):198–208PubMedCrossRefGoogle Scholar
  14. 14.
    Dagum AB (1998) Peripheral nerve regeneration, repair, and grafting. J Hand Ther 11(3):111–117PubMedCrossRefGoogle Scholar
  15. 15.
    de Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26(2):E5PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Deal DN, Griffin JW, Hogan MV (2012) Nerve conduits for nerve repair or reconstruction. J Am Acad Orthop Surg 20(2):63–68PubMedCrossRefGoogle Scholar
  17. 17.
    Donaldson J, Shi R, Borgens R (2002) Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50(1):147–156, discussion 156–7PubMedGoogle Scholar
  18. 18.
    Evans PJ, Midha R, Mackinnon SE (1994) The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol 43(3):187–233PubMedCrossRefGoogle Scholar
  19. 19.
    Felix SP, Pereira Lopes FR, Marques SA, Martinez AM (2013) Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33(6):468–477PubMedCrossRefGoogle Scholar
  20. 20.
    Flores AJ, Lavernia CJ, Owens PW (2000) Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop (Belle Mead NJ) 29(3):167–173Google Scholar
  21. 21.
    Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K, Fornaro M (2009) Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 87:27–46PubMedCrossRefGoogle Scholar
  22. 22.
    Heumann R, Korsching S, Bandtlow C, Thoenen H (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 104(6):1623–1631PubMedCrossRefGoogle Scholar
  23. 23.
    Jain A, Valmikinathan CM, Bellamkonda RV (2011) Peripheral nerve regeneration. Tissue Eng, Neurol Neurosurg 5:421–433Google Scholar
  24. 24.
    Jenq CB, Coggeshall RE (1985) Nerve regeneration through holey silicone tubes. Brain Res 361(1–2):233–241PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson EO, Zoubos AB, Soucacos PN (2005) Regeneration and repair of peripheral nerves. Injury 36(Suppl 4):S24–S29PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson TS, O'Neill AC, Motarjem PM, Amann C, Nguyen T, Randolph MA, Winograd JM, Kochevar IE, Redmond RW (2007) Photochemical tissue bonding: a promising technique for peripheral nerve repair. J Surg Res 143(2):224–229PubMedCrossRefGoogle Scholar
  27. 27.
    Kemp SW, Syed S, Walsh W, Zochodne DW, Midha R (2009) Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits. Tissue Eng Part A 15(8):1975–1988PubMedCrossRefGoogle Scholar
  28. 28.
    Kline DG (1990) Surgical repair of peripheral nerve injury. Muscle Nerve 13(9):843–852PubMedCrossRefGoogle Scholar
  29. 29.
    Kline DG, Hayes GJ (1963) An experimental evaluation of the effect of a plastic adhesive, methyl 2-cyanoacrylate, on neural tissue. J Neurosurg 20:647–654PubMedCrossRefGoogle Scholar
  30. 30.
    Lanaras TI, Schaller HE, Sinis N (2009) Brachial plexus lesions: 10 years of experience in a center for microsurgery in Germany. Microsurgery 29(2):87–94PubMedCrossRefGoogle Scholar
  31. 31.
    Landegren T, Risling M, Brage A, Persson JK (2006) Long-term results of peripheral nerve repair: a comparison of nerve anastomosis with ethyl-cyanoacrylate and epineural sutures. Scand J Plast Reconstr Surg Hand Surg 40(2):65–72PubMedCrossRefGoogle Scholar
  32. 32.
    Landegren T, Risling M, Persson JK (2007) Local tissue reactions after nerve repair with ethyl-cyanoacrylate compared with epineural sutures. Scand J Plast Reconstr Surg Hand Surg 41(5):217–227PubMedCrossRefGoogle Scholar
  33. 33.
    Lauto A. (2005) Laser-activated biomaterials for tissue repair, in Faculty of Engineering. University of New South WalesGoogle Scholar
  34. 34.
    Lauto A, Dawes JM, Cushway T, Piper JA, Owen ER (1998) Laser nerve repair by solid protein band technique. I: identification of optimal laser dose, power, and solder surface area. Microsurgery 18(1):55–59PubMedCrossRefGoogle Scholar
  35. 35.
    Lauto A, Dawes JM, Piper JA, Owen ER (1998) Laser nerve repair by solid protein band techniqueII: assessment of long-term nerve regeneration. Microsurgery 18(1):60–64PubMedCrossRefGoogle Scholar
  36. 36.
    Lauto A, Foster LJ, Avolio A, Sampson D, Raston C, Sarris M, McKenzie G, Stoodley M (2008) Sutureless nerve repair with laser-activated chitosan adhesive: a pilot in vivo study. Photomed Laser Surg 26(3):227–234PubMedCrossRefGoogle Scholar
  37. 37.
    Lauto A, Foster LJ, Ferris L, Avolio A, Zwaneveld N, Poole-Warren LA (2004) Albumin-genipin solder for laser tissue repair. Lasers Surg Med 35(2):140–145PubMedCrossRefGoogle Scholar
  38. 38.
    Lauto A, Mawad D, Foster JL (2008) Review adhesive biomaterials for tissue reconstruction. J Chem Technol Biotechnol 83(1):464–472CrossRefGoogle Scholar
  39. 39.
    Lauto A, Stewart R, Ohebshalom M, Nikkoi ND, Felsen D, Poppas DP (2001) Impact of solubility on laser tissue-welding with albumin solid solders. Lasers Surg Med 28(1):44–49PubMedCrossRefGoogle Scholar
  40. 40.
    Lauto A, Stoodley M, Marcel H, Avolio A, Sarris M, McKenzie G, Sampson DD, Foster LJ (2007) In vitro and in vivo tissue repair with laser-activated chitosan adhesive. Lasers Surg Med 39(1):19–27PubMedCrossRefGoogle Scholar
  41. 41.
    Lauto A, Trickett R, Malik R, Dawes JM, Owen ER (1997) Laser-activated solid protein bands for peripheral nerve repair: an vivo study. Lasers Surg Med 21(2):134–141PubMedCrossRefGoogle Scholar
  42. 42.
    Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8(4):243–252PubMedGoogle Scholar
  43. 43.
    Lundborg G (2000) A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 25(3):391–414PubMedCrossRefGoogle Scholar
  44. 44.
    Lundborg G, Rosen B, Dahlin L, Danielsen N, Holmberg J (1997) Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am 22(1):99–106PubMedCrossRefGoogle Scholar
  45. 45.
    Mackinnon SE, Dellon AL (1990) Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 85(3):419–424PubMedCrossRefGoogle Scholar
  46. 46.
    Madeiro R, Martinez AM, Ferreira ST (2010) 2,4-Dinitrophenol blocks neurodegeneration and preserves sciatic nerve function following trauma. J Neurotrauma 27:829–841CrossRefGoogle Scholar
  47. 47.
    Mafi P, Hindocha S, Dhital M, Saleh M (2012) Advances of peripheral nerve repair techniques to improve hand function: a systematic review of literature. Open Orthop J 6(1):60–68CrossRefGoogle Scholar
  48. 48.
    Martins RS, Siqueira MG, Da Silva CF, Plese JP (2005) Overall assessment of regeneration in peripheral nerve lesion repair using fibrin glue, suture, or a combination of the 2 techniques in a rat model. Which is the ideal choice? Surg Neurol 64(Suppl 1):S1:10–6, discussion S1:16Google Scholar
  49. 49.
    Matsuyama T, Mackay M, Midha R (2000) Peripheral nerve repair and grafting techniques: a review. Neurol Med Chir (Tokyo) 40(4):187–199CrossRefGoogle Scholar
  50. 50.
    Menovsky T, Beek JF (2003) Carbon dioxide laser-assisted nerve repair: effect of solder and suture material on nerve regeneration in rat sciatic nerve. Microsurgery 23(2):109–116PubMedCrossRefGoogle Scholar
  51. 51.
    Menovsky T, Beek JF (2001) Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J Neurosurg 95(4):694–699PubMedCrossRefGoogle Scholar
  52. 52.
    Menovsky T, Beek JF, Thomsen SL (1995) Laser(-assisted) nerve repair. A review. Neurosurg Rev 18(4):225–235PubMedCrossRefGoogle Scholar
  53. 53.
    Menovsky T, van den Bergh Weerman M, Beek JF (1996) Effect of CO2 milliwatt laser on peripheral nerves: Part I. A dose-response study. Microsurgery 17(10):562–567PubMedCrossRefGoogle Scholar
  54. 54.
    Millesi H (2006) Factors affecting the outcome of peripheral nerve surgery. Microsurgery 26(4):295–302PubMedCrossRefGoogle Scholar
  55. 55.
    Millesi H (1990) Progress in peripheral nerve reconstruction. World J Surg 14(6):733–747PubMedCrossRefGoogle Scholar
  56. 56.
    Mostafa BE, Samir MM (1998) Neurohistological changes after facial nerve rerouting. Eur Arch Otorhinolaryngol: Off J Eur Fed OtoRhinoLaryngol Soc 255(3):115–118CrossRefGoogle Scholar
  57. 57.
    Moy OJ, Peimer CA, Koniuch MP, Howard C, Zielezny M, Katikaneni PR (1988) Fibrin seal adhesive versus nonabsorbable microsuture in peripheral nerve repair. J Hand Surg Am 13(2):273–278PubMedCrossRefGoogle Scholar
  58. 58.
    Navarro X, Rodriguez FJ, Ceballos D, Verdu E (2003) Engineering an artificial nerve graft for the repair of severe nerve injuries. Med Biol Eng Compu 41(2):220–226CrossRefGoogle Scholar
  59. 59.
    Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3):357–366PubMedCrossRefGoogle Scholar
  60. 60.
    O'Neill AC, Randolph MA, Bujold KE, Kochevar IE, Redmond RW, Winograd JM (2009) Photochemical sealing improves outcome following peripheral neurorrhaphy. J Surg Res 151(1):33–39PubMedCrossRefGoogle Scholar
  61. 61.
    Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante PL, Bustamante JC, Avalos P, Varela D, Lopez M (2006) Fibrin glue: an alternative technique for nerve coaptation—part I. Wave amplitude, conduction velocity, and plantar-length factors. J Reconstr Microsurg 22(2):119–122PubMedCrossRefGoogle Scholar
  62. 62.
    Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante RL, Bustamante JC, Avalos P, Varela D, Lopez M (2006) Fibrin glue: an alternative technique for nerve coaptation—part II. Nerve regeneration and histomorphometric assessment. J Reconstr Microsurg 22(2):123–128PubMedCrossRefGoogle Scholar
  63. 63.
    Pabari A, Yang SY, Seifalian AM, Mosahebi A (2010) Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg 63:1941–1948PubMedCrossRefGoogle Scholar
  64. 64.
    Patel M, Vandevord PJ, Matthew H, Wu B, DeSilva S, Wooley PH (2006) Video-gait analysis of functional recovery of nerve repaired with chitosan nerve guides. Tissue Eng 12(11):3189–3199PubMedCrossRefGoogle Scholar
  65. 65.
    Pereira MJ, Ouyang B, Sundback CA, Lang N, Friehs I, Mureli S, Pomerantseva I, McFadden J, Mochel MC, Mwizerwa O, Del Nido P, Sarkar D, Masiakos PT, Langer R, Ferreira LS, Karp JM (2013) A highly tunable biocompatible and multifunctional biodegradable elastomer. Adv Mater 25(8):1209–1215PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pettersson J, Kalbermatten D, McGrath A, Novikova LN (2010) Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. J Plast, Reconstr Aesthet Surg: JPRAS 63(11):1893–1899PubMedCrossRefGoogle Scholar
  67. 67.
    Poppas DP, Stewart RB, Massicotte JM, Wolga AE, Kung RT, Retik AB, Freeman MR (1996) Temperature-controlled laser photocoagulation of soft tissue: in vivo evaluation using a tissue welding model. Lasers Surg Med 18(4):335–344PubMedCrossRefGoogle Scholar
  68. 68.
    Preul MC, Campbell PK, Bichard WD, Spetzler RF (2007) Application of a hydrogel sealant improves watertight closures of duraplasty onlay grafts in a canine craniotomy model. J Neurosurg 107(3):642–650PubMedCrossRefGoogle Scholar
  69. 69.
    Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223(1):77–85PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Reid AJ, de Luca AC, Faroni A, Downes S, Sun M, Terenghi G, Kingham PJ (2013) Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 544:125–130PubMedCrossRefGoogle Scholar
  71. 71.
    Richardson PM, Miao T, Wu D, Zhang Y, Yeh J, Bo X (2009) Responses of the nerve cell body to axotomy. Neurosurgery 65(4):74–79CrossRefGoogle Scholar
  72. 72.
    Rickett T, Li J, Patel M, Sun W, Leung G, Shi R (2009) Ethyl-cyanoacrylate is acutely nontoxic and provides sufficient bond strength for anastomosis of peripheral nerves. J Biomed Mater Res A 90(3):750–754PubMedCrossRefGoogle Scholar
  73. 73.
    Roaf R (1948) Classification of peripheral-nerve injuries. Lancet 1(6494):242PubMedCrossRefGoogle Scholar
  74. 74.
    Robinson GA, Madison RD (2003) Preferential motor reinnervation in the mouse: comparison of femoral nerve repair using a fibrin sealant or suture. Muscle Nerve 28(2):227–231PubMedCrossRefGoogle Scholar
  75. 75.
    Robinson LR (2004) Traumatic injury to peripheral nerves. Suppl Clin Neurophysiol 57:173–186PubMedCrossRefGoogle Scholar
  76. 76.
    Rodriguez FJ, Gomez N, Perego G, Navarro X (1999) Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 20(16):1489–1500PubMedCrossRefGoogle Scholar
  77. 77.
    Rowshan K, Jones NF, Gupta GR (2004) Current surgical techniques of peripheral nerve repair. Oper Tech Orthop 14(1):163–170CrossRefGoogle Scholar
  78. 78.
    Sameem M, Wood TJ, Bain JR (2011) A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg 127(6):2381–2390PubMedCrossRefGoogle Scholar
  79. 79.
    Seddon HJ (1942) A classification of nerve injuries. Br Med J 2(4260):237–239PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Seiler JG 3rd, Payne SH (1999) Treatment of peripheral nerve injuries: surgeons' perspective. J Hand Ther 12(2):135–140PubMedCrossRefGoogle Scholar
  81. 81.
    Shahbazi J, Marcal H, Watson S, Wakefield D, Sarris M, Foster LJ (2011) Sutureless sealing of penetrating corneal wounds using a laser-activated thin film adhesive. Lasers Surg Med 43(6):490–498PubMedCrossRefGoogle Scholar
  82. 82.
    Shin RH, Friedrich PF, Crum BA, Bishop AT, Shin AY (2009) Treatment of a segmental nerve defect in the rat with use of bioabsorbable synthetic nerve conduits: a comparison of commercially available conduits. J Bone Joint Surg Am 91(9):2194–2204PubMedCrossRefGoogle Scholar
  83. 83.
    Siemionow M, Brzezicki G (2009) Chapter 8: current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 87:141–172PubMedCrossRefGoogle Scholar
  84. 84.
    Siemionow M, Tetik C, Ozer K, Ayhan S, Siemionow K, Browne E (2002) Epineural sleeve neurorrhaphy: surgical technique and functional results—a preliminary report. Ann Plast Surg 48(3):281–285PubMedCrossRefGoogle Scholar
  85. 85.
    Siemionow M, Zielinski M, Meirer R (2004) The single-fascicle method of nerve grafting. Ann Plast Surg 52(1):72–79PubMedCrossRefGoogle Scholar
  86. 86.
    Simhon D, Ravid A, Halpern M, Cilesiz I, Brosh T, Kariv N, Leviav A, Katzir A (2001) Laser soldering of rat skin, using fiberoptic temperature controlled system. Lasers Surg Med 29(3):265–273PubMedCrossRefGoogle Scholar
  87. 87.
    Sinis N, Schaller HE, Schulte-Eversum C, Lanaras T, Schlosshauer B, Doser M, Dietz K, Rosner H, Muller HW, Haerle M (2007) Comparative neuro tissue engineering using different nerve guide implants. Acta neurochirurgica 100:61–64PubMedCrossRefGoogle Scholar
  88. 88.
    Snyder CC, Webster HD, Pickens JE, Hines WA, Warden G (1968) Intraneural neurorrhaphy: a preliminary clinical and histological evaluation. Ann Surg 167(5):691–696PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stanec S, Stanec Z (1998) Reconstruction of upper-extremity peripheral-nerve injuries with ePTFE conduits. J Reconstr Microsurg 14(4):227–232PubMedCrossRefGoogle Scholar
  90. 90.
    Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74(4):491–516PubMedCrossRefGoogle Scholar
  91. 91.
    Temple CL, Ross DC, Dunning CE, Johnson JA (2004) Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstr Microsurg 20(8):645–650PubMedCrossRefGoogle Scholar
  92. 92.
    Terzis JK, Skoulis TG, Soucacos PN (1995) Vascularized nerve grafts. A review. Int Angiol 14(3):264–277PubMedGoogle Scholar
  93. 93.
    Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106(5):1036–1045, discussion 1046–8,(2000)PubMedCrossRefGoogle Scholar
  94. 94.
    Whitlock EL, Kasukurthi R, Yan Y, Tung TH, Hunter DA, Mackinnon SE (2010) Fibrin glue mitigates the learning curve of microneurosurgical repair. Microsurgery 30(3):218–222PubMedGoogle Scholar
  95. 95.
    Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, Moore AM, Tong AY, Mackinnon SE, Borschel GH (2009) Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39(6):787–799PubMedCrossRefGoogle Scholar
  96. 96.
    Wieken K, Angioi-Duprez K, Lim A, Marchal L, Merle M (2003) Nerve anastomosis with glue: comparative histologic study of fibrin and cyanoacrylate glue. J Reconstr Microsurg 19(1):17–20PubMedCrossRefGoogle Scholar
  97. 97.
    Wolford LM, Stevao EL (2003) Considerations in nerve repair. Proc (Bayl Univ Med Cent) 16(2):152–156Google Scholar
  98. 98.
    Xu J, Brennan TJ (2009) Comparison of skin incision vs. skin plus deep tissue incision on ongoing pain and spontaneous activity in dorsal horn neurons. Pain 144(3):329–339PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yang LJ, Chang KW, Chung KC (2012) A systematic review of nerve transfer and nerve repair for the treatment of adult upper brachial plexus injury. Neurosurgery 71(2):417–429, discussion 429,(2012)PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang P, Han N, Wang T, Xue F, Kou Y, Wang Y, Yin X, Lu L, Tian G, Gong X, Chen S, Dang Y, Peng J, Jiang B (2013) Biodegradable conduit small gap tubulization for peripheral nerve mutilation: a substitute for traditional epineurial neurorrhaphy. Int J Med Sci 10(2):171–175PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthew J. Barton
    • 1
  • John W. Morley
    • 2
    • 3
  • Marcus A. Stoodley
    • 4
  • Antonio. Lauto
    • 2
    • 3
  • David A. Mahns
    • 2
    • 3
  1. 1.Griffith Health InstituteGriffith UniversityQueenslandAustralia
  2. 2.School of MedicineUniversity of Western SydneyPenrithAustralia
  3. 3.The Bioelectronics and Neuroscience (BENS) Research Group, The MARCS InstituteUniversity of Western SydneyPenrithAustralia
  4. 4.The Australian School of Advanced MedicineMacquarie UniversitySydneyAustralia

Personalised recommendations