Advertisement

Neurosurgical Review

, Volume 37, Issue 4, pp 547–557 | Cite as

Fluorescein-guided surgery for malignant gliomas: a review

  • Francesco AcerbiEmail author
  • Claudio Cavallo
  • Morgan Broggi
  • Roberto Cordella
  • Elena Anghileri
  • Marica Eoli
  • Marco Schiariti
  • Giovanni Broggi
  • Paolo Ferroli
Review

Abstract

Fluorescein is widely used as a fluorescent tracer for many applications. Its capacity to accumulate in cerebral areas where there has been blood–brain barrier damage makes it particularly suitable as a dye for the intraoperative visualization of malignant gliomas (MGs). In this report, we describe the results of a comprehensive review on the use of fluorescein in the surgical treatment of MGs. A comprehensive literature search and review for English-written articles concerning the use of fluorescein in the resection of MGs has been conducted. The search was executed through a PubMed literature search using the following keywords: malignant gliomas, glioblastomas, high-grade gliomas, YELLOW 560, total removal, dedicated filter, neurosurgery, brain tumors, intracranial tumors, and confocal microscopy. The literature search resulted in the retrieval of 412 evidence-based articles. Of these, 17 were found to be strictly related to the resection of MG with the aid of fluorescein. In addition to these 17, we have included 2 articles derived from a personal database of the corresponding author (FA). The analysis of the articles reviewed revealed three major applications of fluorescein during surgery for MGs that was documented: Fluorescein-guided resection of MGs with white-light illumination, fluorescein-guided resection of MGs with a surgical microscope equipped with a dedicated filter for fluorescein, and confocal microscopy for intraoperative histopathological analysis on MGs. The systemic review conducted on the use of fluorescein in MGs explored the applications and the different modalities in which fluorescein has been used. The data we have gathered indicates that fluorescein-guided surgery is a safe, effective, and convenient technique to achieve a high rate of total removal in MGs. Further prospective comparative trials, however, are still necessary to prove the impact of fluorescein-guided surgery on both progression-free survival and overall survival.

Keywords

Malignant gliomas Glioblastomas Brain tumors Fluorescein YELLOW 560 Total removal Dedicated filter Confocal microscopy 

Notes

References

  1. 1.
    Acerbi F, Broggi M, Eoli M, Anghileri E, Cuppini L, Pollo B, Schiariti M, Visintini S, Orsi C, Franzini A, Broggi G, Ferroli P (2013) Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases. Acta Neurochir (Wien) 155(7):1277–1286CrossRefGoogle Scholar
  2. 2.
    Belcher EH, Evans HD (1951) The localization of cerebral tumours with radioactive derivatives of fluorescein; physical limitations. Br J Radiol 24(281):272–279PubMedCrossRefGoogle Scholar
  3. 3.
    Chen B, Wang H, Ge P, Zhao J, Li W, Gu H, Wang G, Luo Y, Chen D (2012) Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int J Med Sci 9(8):708–714PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102(1):105–113PubMedCrossRefGoogle Scholar
  5. 5.
    Dilek O, Ihsan A, Tulay H (2011) Anaphylactic reaction after fluorescein sodium administration during intracranial surgery. J Clin Neurosci 18(3):430–431PubMedCrossRefGoogle Scholar
  6. 6.
    Dunbar KB, Canto MI (2010) Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc 72(3):668PubMedCrossRefGoogle Scholar
  7. 7.
    Eschbacher J, Martirosyan NL, Nakaji P, Sanai N, Preul MC, Smith KA, Coons SW, Spetzler RF (2012) In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors. J Neurosurg 116(4):854–860PubMedCrossRefGoogle Scholar
  8. 8.
    Ferroli P, Acerbi F, Albanese E, Tringali G, Broggi M, Franzini A, Broggi G (2011) Application of intraoperative indocyanine green angiography for CNS tumors: results on the first 100 cases. Acta Neurochir Suppl 109:251–257PubMedCrossRefGoogle Scholar
  9. 9.
    Ferroli P, Acerbi F, Tringali G, Albanese E, Broggi M, Franzini A, Broggi G (2011) Venous sacrifice in neurosurgery: new insights from venous indocyanine green videoangiography. J Neurosurg 115(1):18–23PubMedCrossRefGoogle Scholar
  10. 10.
    Hammoud MA, Ligon BL, ElSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumours and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84:737–741PubMedCrossRefGoogle Scholar
  11. 11.
    Hurlstone DP, Tiffin N, Brown SR, Baraza W, Thomson M, Cross SS (2008) In vivo confocal laser scanning chromo-endomicroscopy of colorectal neoplasia: changing the technological paradigm. Histopathology 52:417–426PubMedCrossRefGoogle Scholar
  12. 12.
    Kabuto M, Kubota T, Kobayashi H, Nakagawa T, Ishii H, Takeuchi H, Kitai R, Kodera T (1997) Experimental and clinical study of detection of glioma at surgery using fluorescent imaging by a surgical microscope after fluorescein administration. Neurol Res 19(1):9–16PubMedGoogle Scholar
  13. 13.
    Kiesslich R, Gossner L, Goetz M, Dahlmann A, Vieth M, Stolte M, Hoffman A, Jung M, Nafe B, Galle PR, Neurath MF (2006) In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol 4:979–987PubMedCrossRefGoogle Scholar
  14. 14.
    Koc K, Anik I, Cabuk B, Ceylan S (2008) Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg 22(1):99–103PubMedCrossRefGoogle Scholar
  15. 15.
    Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12(11):1062–1070PubMedCrossRefGoogle Scholar
  16. 16.
    Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchdelferd M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13(12):1339–1348PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kuroiwa T, Kajimoto Y, Ohta T (1999) Surgical management for supratentorial astrocytic tumors. Minim Invasive Neurosurg 42(4):182–186PubMedCrossRefGoogle Scholar
  18. 18.
    Kuroiwa T, Kajimoto Y, Ohta T (1999) Comparison between operative findings on malignant glioma by a fluorescein surgical microscopy and histological findings. Neurol Res 21(1):130–134PubMedGoogle Scholar
  19. 19.
    Kuroiwa T, Kajimoto Y, Ohta T (1998) Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg Neurol 50(1):41–48PubMedCrossRefGoogle Scholar
  20. 20.
    Kwan AS, Barry C, McAllister IL, Constable I (2006) Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience. Clin Exp Ophthalmol 34(1):33–38CrossRefGoogle Scholar
  21. 21.
    Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98(7):1139–1142PubMedCrossRefGoogle Scholar
  22. 22.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbush SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198PubMedCrossRefGoogle Scholar
  23. 23.
    Litofsky NS, Bauer AM, Kasper RS, Sullivan CM, Dabbous OH (2006) Image-guided resection of high-grade glioma: patient selection factors and outcome. Neurosurg Focus 20(3):E16PubMedCrossRefGoogle Scholar
  24. 24.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) IARC WHO Classification of tumours of the central nervous system International Agency for Research on Cancer. World Health Organization, LyonGoogle Scholar
  25. 25.
    McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110(1):156–162PubMedCrossRefGoogle Scholar
  26. 26.
    Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg 5(4):392–398PubMedCrossRefGoogle Scholar
  27. 27.
    Moore GE (1947) Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106(2745):130–131PubMedCrossRefGoogle Scholar
  28. 28.
    Murray KJ (1982) Improved surgical resection of human brain tumors: part I. A preliminary study. Surg Neurol 17(5):316–319PubMedCrossRefGoogle Scholar
  29. 29.
    Nimsky C, Ganslandt O, Buchfelder M, Fahlbush R (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5T MRI. Neurol Res 28(5):482–487PubMedCrossRefGoogle Scholar
  30. 30.
    Novtny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24:82–86CrossRefGoogle Scholar
  31. 31.
    Okuda T, Yoshioka H, Kato A (2012) Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters. J Clin Neurosci 19(12):1719–1722PubMedCrossRefGoogle Scholar
  32. 32.
    Sanai N, Eschbacher J, Hattendorf G, Coons SW, Preul MC, Smith KA, Nakaji P, Spetzler RF (2011) Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery 68(2 Suppl Operative):282–290PubMedGoogle Scholar
  33. 33.
    Sankar T, Delaney PM, Ryan RW, Eschbacher J, Abdelwahab M, Nakaji P, Coons SW, Scheck AC, Smith KA, Spetzler RF, Preul MC (2010) Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery 66(2):410–417PubMedCrossRefGoogle Scholar
  34. 34.
    Schebesch KM, Proescholdt M, H√∂hne J, Hohenberger C, Hansen E, Riemenschneider MJ, Ullrich W, Doenitz C, Schlaier J, Lange M, Brawanski A (2013) Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery-a feasibility study. Acta Neurochir (Wien) 155(4):693–699CrossRefGoogle Scholar
  35. 35.
    Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003PubMedCrossRefGoogle Scholar
  36. 36.
    Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, Sakai N (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg 99(3):597–603PubMedCrossRefGoogle Scholar
  37. 37.
    Stummer W, Meinel T, Ewelt C, Martus P, Jakobs O, Felsber J, Reifenberger G (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108(1):89–97PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013PubMedCrossRefGoogle Scholar
  39. 39.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5- aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401PubMedCrossRefGoogle Scholar
  40. 40.
    Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45(2–3):160–169PubMedCrossRefGoogle Scholar
  41. 41.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–526PubMedCrossRefGoogle Scholar
  42. 42.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  43. 43.
    Svien HJ, Johnson AB (1951) Fluorescein in the localization of brain tumors. Proc Staff Meet Mayo Clin 26(8):142–150PubMedGoogle Scholar
  44. 44.
    Tan J, Quinn MA, Pyman JM, Delaney PM, McLaren WJ (2009) Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116:1663–1670PubMedCrossRefGoogle Scholar
  45. 45.
    Tanahashi S, Lida H, Dohi S (2006) An anaphylactoid reaction after administration of fluorescein sodium during neurosurgery. Anesth Analg 103(2):503PubMedCrossRefGoogle Scholar
  46. 46.
    Tonn JC, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26PubMedGoogle Scholar
  47. 47.
    Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA (2002) Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 50(4):804–812PubMedCrossRefGoogle Scholar
  48. 48.
    Wiesner C, Jäger W, Salzer A, Biesterfeld S, Kiesslich R, Hampel C, Thüroff JW, Goetz M (2011) Confocal laser endomicroscopy for the diagnosis of urothelial bladder neoplasia: a technology of the future? BJU Int 107:399–403PubMedCrossRefGoogle Scholar
  49. 49.
    Wirtz CR, Albert FK, Schwaderer M, Heuer C, Staubert A, Tronnier VM, Knauth M, Kunze S (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 22(4):354–360PubMedGoogle Scholar
  50. 50.
    Yannuzzi LA, Rohrer KT, Tindel LJ, Sobel RS, Costanza MA, Shields W, Zang E (1986) Fluorescein angiography complication survey. Ophthalmology 93(5):611–617PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesco Acerbi
    • 1
    Email author
  • Claudio Cavallo
    • 1
  • Morgan Broggi
    • 1
  • Roberto Cordella
    • 1
  • Elena Anghileri
    • 2
  • Marica Eoli
    • 2
  • Marco Schiariti
    • 1
  • Giovanni Broggi
    • 1
  • Paolo Ferroli
    • 1
  1. 1.Neurosurgical DepartmentFoundation IRCCS Istituto Neurologico Carlo BestaMilanItaly
  2. 2.Molecular Neuro-oncologyFoundation IRCCS Istituto Neurologico Carlo BestaMilanItaly

Personalised recommendations