Advertisement

Neurosurgical Review

, Volume 36, Issue 2, pp 289–296 | Cite as

Application of 4D-CTA using 320-row area detector computed tomography on spinal arteriovenous fistulae: initial experience

  • Satoshi Yamaguchi
  • Masaaki Takeda
  • Takafumi Mitsuhara
  • Shiro Kajihara
  • Kazutoshi Mukada
  • Kuniki Eguchi
  • Yosuke Kajihara
  • Kohei Takemoto
  • Kazuhiko Sugiyama
  • Kaoru Kurisu
Original Article

Abstract

Time-resolved computed tomography angiography (4D-CTA) using a 320-row area detector CT scanner has recently been applied in the evaluation of cranial vascular disorders. However, application of 4D-CTA to spinal vascular disorder evaluation has never before been described. The authors herein report their initial experience of 4D-CTA in the evaluation of spinal arteriovenous fistulas (AVFs) and compare this novel modality with other imaging modalities. Four consecutive patients with spinal AVF underwent time-resolved contrast-enhanced magnetic resonance angiography (trMRA), 4D-CTA, and selective catheter angiography (CA). In 4D-CTA, volume data was transformed into 3D volume-rendered images and maximum intensity projection. These images were also evaluated by time-resolved serial phases. Then, images of each modality were compared, focusing on the detection of perimedullary draining veins and the prediction of AVF location and drainage flow direction. All modalities successfully detected perimedullary draining veins in all cases. Location of the AVF was detected in all cases by CA. trMRA and 4D-CTA detected the AVF in three out of the four cases. With regard to flow direction, while 4D-CTA successfully depicted ascending or descending drainage flow in the spinal canal, CA failed to detect the flow direction in one case while trMRA failed in two cases. In the case with epidural AVF, 4D-CTA was the only technique to detect the flow direction of perimedullary drainage. Although this is only an initial experience of the application of 4D-CTA to spinal vascular diseases, 4D-CTA was capable of detecting the dynamic vascular flow of spinal AVFs. The authors believe that 4D-CTA can be a useful option in the evaluation of spinal AVFs.

Keywords

Spinal arteriovenous fistula 320-row area detector computed tomography 4D-CT angiography 

Notes

References

  1. 1.
    Ali S, Cashen TA, Carroll TJ, McComb E, Muzaffar M, Shaibani A, Walker MT (2007) Time-resolved spinal MR angiography: initial clinical experience in the evaluation of spinal arteriovenous shunts. AJNR Am J Neuroradiol 28(9):1806–1810PubMedCrossRefGoogle Scholar
  2. 2.
    Bertrand D, Douvrin F, Gerardin E, Clavier E, Proust F, Thiebot J (2004) Diagnosis of spinal dural arteriovenous fistula with multidetector row computed tomography: a case report. Neuroradiology 46(10):851–854PubMedCrossRefGoogle Scholar
  3. 3.
    Bowen BC, Fraser K, Kochan JP, Pattany PM, Green BA, Quencer RM (1995) Spinal dural arteriovenous fistulas: evaluation with MR angiography. AJNR Am J Neuroradiol 16(10):2029–2043PubMedGoogle Scholar
  4. 4.
    Brouwer PA, Bosman T, van Walderveen MA, Krings T, Leroux AA, Willems PW (2010) Dynamic 320-section CT angiography in cranial arteriovenous shunting lesions. AJNR Am J Neuroradiol 31(4):767–770PubMedCrossRefGoogle Scholar
  5. 5.
    Eddleman CS, Jeong H, Cashen TA, Walker M, Bendok BR, Batjer HH, Carroll TJ (2009) Advanced noninvasive imaging of spinal vascular malformations. Neurosurg Focus 26(1):E9PubMedCrossRefGoogle Scholar
  6. 6.
    Farb RI, Kim JK, Willinsky RA, Montanera WJ, terBrugge K, Derbyshire JA, van Dijk JM, Wright GA (2002) Spinal dural arteriovenous fistula localization with a technique of first-pass gadolinium-enhanced MR angiography: initial experience. Radiology 222(3):843–850PubMedCrossRefGoogle Scholar
  7. 7.
    Hayakawa M, Maeda S, Sadato A, Tanaka T, Kaito T, Hattori N, Ganaha T, Moriya S, Katada K, Murayama K, Kato Y, Hirose Y (2011) Detection of pulsation in ruptured and unruptured cerebral aneurysms by ECG-gated 3D-CT angiography (4D-CTA) with 320-row area detector CT (ADCT) and evaluation of its clinical usefulness. Neurosurgery 69(4):843–51PubMedCrossRefGoogle Scholar
  8. 8.
    Hayakawa M, Murayama K, Katada K, Hirose Y (2011) Usefulness of 320-row area detector CT in neurosurgery. Jpn J Neurosurg 20(9):640–647Google Scholar
  9. 9.
    Jiang L, Huang CG, Liu P, Yan B, Chen JX, Chen HR, Bai RL, Lu YC (2008) 3-Dimensional rotational angiography for the treatment of spinal cord vascular malformations. Surg Neurol 69(4):369–373, discussion 373–364PubMedCrossRefGoogle Scholar
  10. 10.
    Killory BD, Nakaji P, Maughan PH, Wait SD, Spetzler RF (2011) Evaluation of angiographically occult spinal dural arteriovenous fistulae with surgical microscope-integrated intraoperative near-infrared indocyanine green angiography: report of 3 cases. Neurosurgery 68(3):781–787, discussion 787PubMedCrossRefGoogle Scholar
  11. 11.
    Klingebiel R, Siebert E, Diekmann S, Wiener E, Masuhr F, Wagner M, Bauknecht HC, Dewey M, Bohner G (2009) 4-D Imaging in cerebrovascular disorders by using 320-slice CT: feasibility and preliminary clinical experience. Acad Radiol 16(2):123–129PubMedCrossRefGoogle Scholar
  12. 12.
    Lai PH, Pan HB, Yang CF, Yeh LR, Hsu SS, Lee KW, Weng MJ, Wu MT, Liang HL, Chen CK (2005) Multi-detector row computed tomography angiography in diagnosing spinal dural arteriovenous fistula: initial experience. Stroke 36(7):1562–1564, Epub 2005 Jun 1562PubMedCrossRefGoogle Scholar
  13. 13.
    Luetmer PH, Lane JI, Gilbertson JR, Bernstein MA, Huston J 3rd, Atkinson JL (2005) Preangiographic evaluation of spinal dural arteriovenous fistulas with elliptic centric contrast-enhanced MR Angiography and effect on radiation dose and volume of iodinated contrast material. AJNR Am J Neuroradiol 26(4):711–718PubMedGoogle Scholar
  14. 14.
    Luo Z, Wang D, Sun X, Zhang T, Liu F, Dong D, Chan NK, Shen B (2011) Comparison of the accuracy of subtraction CT angiography performed on 320-detector row volume CT with conventional CT angiography for diagnosis of intracranial aneurysms. Eur J Radiol 81(1):118–22PubMedCrossRefGoogle Scholar
  15. 15.
    Morris JM, Kaufmann TJ, Campeau NG, Cloft HJ, Lanzino G (2011) Volumetric myelographic magnetic resonance imaging to localize difficult-to-find spinal dural arteriovenous fistulas. J Neurosurg Spine 14(3):398–404PubMedCrossRefGoogle Scholar
  16. 16.
    Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A (2007) Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol 28(7):1249–1258PubMedCrossRefGoogle Scholar
  17. 17.
    Oldfield EH, Bennett A 3rd, Chen MY, Doppman JL (2002) Successful management of spinal dural arteriovenous fistulas undetected by arteriography. Report of three cases. J Neurosurg 96(2 Suppl):220–229PubMedGoogle Scholar
  18. 18.
    Prestigiacomo CJ, Niimi Y, Setton A, Berenstein A (2003) Three-dimensional rotational spinal angiography in the evaluation and treatment of vascular malformations. AJNR Am J Neuroradiol 24(7):1429–1435PubMedGoogle Scholar
  19. 19.
    Saladino A, Atkinson JL, Rabinstein AA, Piepgras DG, Marsh WR, Krauss WE, Kaufmann TJ, Lanzino G (2010) Surgical treatment of spinal dural arteriovenous fistulae: a consecutive series of 154 patients. Neurosurgery 67(5):1350–1357, discussion 1357–1358PubMedCrossRefGoogle Scholar
  20. 20.
    Sharma AK, Westesson PL (2008) Preoperative evaluation of spinal vascular malformation by MR angiography: how reliable is the technique: case report and review of literature. Clin Neurol Neurosurg 110(5):521–524PubMedCrossRefGoogle Scholar
  21. 21.
    Si-Jia G, Meng-Wei Z, Xi-Ping L, Yu-Shen Z, Jing-Hong L, Zhong-Hui W, Pei-Zhuo Z, Qiang S, Qiang W, Chuan-Sheng L, Ke X (2008) The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Eur J Radiol 20:20Google Scholar
  22. 22.
    Sugawara T, Hirano Y, Itoh Y, Kinouchi H, Takahashi S, Mizoi K (2007) Angiographically occult spinal dural arteriovenous fistula located using selective computed tomography angiography. Case report. J Neurosurg Spine 7(2):215–220PubMedCrossRefGoogle Scholar
  23. 23.
    Valentin J (2007) Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Ann ICRP 37(1):1–79, iiiCrossRefGoogle Scholar
  24. 24.
    Vargas MI, Nguyen D, Viallon M, Kulcsar Z, Tessitore E, Rilliet B, Rufenacht D, Lovblad K (2010) Dynamic MR angiography (MRA) of spinal vascular diseases at 3 T. Eur Radiol 20(10):2491–2495PubMedCrossRefGoogle Scholar
  25. 25.
    Willems PW, Brouwer PA, Barfett JJ, terBrugge KG, Krings T (2011) Detection and classification of cranial dural arteriovenous fistulas using 4D-CT angiography: initial experience. AJNR Am J Neuroradiol 32(1):49–53PubMedGoogle Scholar
  26. 26.
    Willems PW, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T (2011) The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology 54(2):123–31PubMedCrossRefGoogle Scholar
  27. 27.
    Yamaguchi S, Eguchi K, Kiura Y, Takeda M, Nagayama T, Uchida H, Ito Y, Hotta T, Arita K, Kurisu K (2007) Multi-detector-row CT angiography as a preoperative evaluation for spinal arteriovenous fistulae. Neurosurg Rev 30(4):321–326, discussion 327PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaguchi S, Nagayama T, Eguchi K, Takeda M, Arita K, Kurisu K (2010) Accuracy and pitfalls of multidetector-row computed tomography in detecting spinal dural arteriovenous fistulas. J Neurosurg Spine 12(3):243–248PubMedCrossRefGoogle Scholar
  29. 29.
    Zampakis P, Santosh C, Taylor W, Teasdale E (2006) The role of non-invasive computed tomography in patients with suspected dural fistulas with spinal drainage. Neurosurgery 58(4):686–694, discussion 686–694PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Satoshi Yamaguchi
    • 1
  • Masaaki Takeda
    • 1
  • Takafumi Mitsuhara
    • 1
  • Shiro Kajihara
    • 2
  • Kazutoshi Mukada
    • 2
  • Kuniki Eguchi
    • 1
  • Yosuke Kajihara
    • 2
  • Kohei Takemoto
    • 3
  • Kazuhiko Sugiyama
    • 1
  • Kaoru Kurisu
    • 1
  1. 1.Department of Neusorugery, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of NeurosurgeryItsukaichi Memorial HospitalHiroshimaJapan
  3. 3.Technical Division of Diagnostic ImagingItsukaichi Memorial HospitalHiroshimaJapan

Personalised recommendations