Neurosurgical Review

, Volume 32, Issue 3, pp 265–273 | Cite as

Dendritic-cell- and peptide-based vaccination strategies for glioma



Despite advances in radiation and chemotherapy along with surgical resectioning, the prognosis of patients with malignant glioma is poor. Therefore, the development of a new treatment modality is extremely important. There are increasing reports demonstrating that systemic immunotherapy using dendritic cells and peptide is capable of inducing an antiglioma response. This review highlights dendritic-cell- and peptide-based immunotherapy for glioma patients. Dendritic-cell- and peptide-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response and increase survival in patients with glioma. Dendritic cell- and peptide-based therapy of glioma seems to be safe and without major side effects. There are several types of glioma; so to achieve effective therapy, it may be necessary to evaluate the molecular genetic abnormalities in individual patient tumors and design novel immunotherapeutic strategies based on the pharmacogenomic findings. Here, in this review, recent advances in dendritic-cell- and peptide-based immunotherapy approaches for patients with gliomas are discussed.


Dendritic cells Glioma Peptide vaccination Immunotherapy 



  1. 1.
    Barratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano S 3rd, Murphey-Corb M, Falo LD Jr, Donnenberg AD (2000) Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J Immunol 164:2487–2495PubMedGoogle Scholar
  2. 2.
    Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224PubMedGoogle Scholar
  3. 3.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90(19):1473–1479PubMedCrossRefGoogle Scholar
  4. 4.
    Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918PubMedCrossRefGoogle Scholar
  5. 5.
    de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJ (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100PubMedGoogle Scholar
  6. 6.
    Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100(1):174–177PubMedCrossRefGoogle Scholar
  7. 7.
    Dietz AB, Bulur PA, Knutson GJ, Matasić R, Vuk-Pavlović S (2000) Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem Biophys Res Commun 275(3):731–738PubMedCrossRefGoogle Scholar
  8. 8.
    Grabbe S, Kämpgen E, Schuler G (2000) Dendritic cells: multi-lineal and multi functional. Immunol Today 21:431–433PubMedCrossRefGoogle Scholar
  9. 9.
    Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P, Sutmuller RP, Adema GJ (2007) CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105PubMedCrossRefGoogle Scholar
  10. 10.
    Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722PubMedCrossRefGoogle Scholar
  11. 11.
    Harada M, Ishihara Y, Itoh K, Yamanaka R (2007) Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in HLA-A24+ glioma patients. Oncol Rep 17:629–636PubMedGoogle Scholar
  12. 12.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRefGoogle Scholar
  13. 13.
    Imaizumi T, Kuramoto T, Matsunaga K, Shichijo S, Yutani S, Shigemori M, Oizumi K, Itoh K (1999) Expression of the tumor-rejection antigen SART1 in brain tumors. Int J Cancer 83:760–764PubMedCrossRefGoogle Scholar
  14. 14.
    Itoh K, Yamada A (2006) Personalized peptide vaccines: a new therapeutic modality for cancer (review). Cancer Sci 97:970–976PubMedCrossRefGoogle Scholar
  15. 15.
    Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, Hashimoto N, Maruno M, Elisseeva OA, Shirakata T, Kawakami M, Oji Y, Nishida S, Ohno S, Kawase I, Hatazawa J, Nakatsuka S, Aozasa K, Morita S, Sakamoto J, Sugiyama H, Yoshimine T (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108(5):963–971PubMedCrossRefGoogle Scholar
  16. 16.
    Janeway CA, Shlomchik MJ, Travers P, Walport M (2004) Using the immune response to attack tumors. In: Janeway CA, Shlomchik MJ, Travers P, Walport J (eds) Immunobiology, 6th edn. Garland Science, New York, pp 630–642Google Scholar
  17. 17.
    Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344PubMedCrossRefGoogle Scholar
  18. 18.
    Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459PubMedCrossRefGoogle Scholar
  19. 19.
    Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728PubMedCrossRefGoogle Scholar
  20. 20.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786PubMedCrossRefGoogle Scholar
  21. 21.
    Kuramoto T (1997) Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 44:43–51PubMedGoogle Scholar
  22. 22.
    Kurapad SN (1995) Tumor antigens in astrocytic gliomas. Glia 15:244–256CrossRefGoogle Scholar
  23. 23.
    Lallier TE (1991) Cell lineage and cell migration in the neural crest. Ann N Y Acad Sci 615:158–171PubMedCrossRefGoogle Scholar
  24. 24.
    Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130PubMedGoogle Scholar
  25. 25.
    Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL, Ying H (2004) AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 27:220–226PubMedCrossRefGoogle Scholar
  26. 26.
    Liu G, Akasaki Y, Khong HT, Wheeler CJ, Das A, Black KL, Yu JS (2005) Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24:5226–5234PubMedCrossRefGoogle Scholar
  27. 27.
    Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5:233–247PubMedCrossRefGoogle Scholar
  28. 28.
    Liau LM, Prins RM, Odesa SK, Yang MY, Lin MS, Khan-Farooqi H, Soto H, Lai A, Bosch M, Boynton A, Cloughesy TF (2007) Dendritic cell vaccination in combination with TLR-7 agonist, imiquiod following radio-chemotherapy for newly diagnosed glioblastoma. Proc Am Soc Clin Oncol 25:2021Google Scholar
  29. 29.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024PubMedCrossRefGoogle Scholar
  30. 30.
    Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, Tanaka S, Shomura H, Katagiri K, Rikimaru T, Shichijo S, Kamura T, Hashimoto T, Shirouzu K, Yamada A, Todo S, Itoh K, Yamana H (2004) Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing peptide-specific cellular responses. Clin Cancer Res 10:929–937PubMedCrossRefGoogle Scholar
  31. 31.
    Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, Nakagawa M, Muto A, Okouchi S, Isomoto H, Shirouzu K, Yamana H, Itoh K (2001) Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination of SART3 peptides. Clin Cancer Res 7:3950–3962PubMedGoogle Scholar
  32. 32.
    Murayama K, Kobayashi T, Imaizumi T, Matsunaga K, Kuramoto T, Shigemori M, Shichijo S, Itoh K (2000) Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J Immunother 23:511–518PubMedCrossRefGoogle Scholar
  33. 33.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325PubMedCrossRefGoogle Scholar
  34. 34.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRefGoogle Scholar
  35. 35.
    Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H (2002) Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 8:2851–2855PubMedGoogle Scholar
  36. 36.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRefGoogle Scholar
  38. 38.
    Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kühl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sörensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662PubMedGoogle Scholar
  39. 39.
    Sahin U, Koslowski M, Türeci O, Eberle T, Zwick C, Romeike B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh M (2000) Expression of cancer testis genes in human brain tumors. Clin Cancer Res 6:3916–3922PubMedGoogle Scholar
  40. 40.
    Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352PubMedCrossRefGoogle Scholar
  41. 41.
    Sampson JH, Archer GE, Bigner DD, Davis T, Friedman HS, Keler T, Mitchell DA, Reardon DA, Sawaya R, Heimberger AB (2008) Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM. Proc Am Soc Clin Oncol 26:2011Google Scholar
  42. 42.
    Sasaki M, Nakahira K, Kawano Y, Katakura H, Yoshimine T, Shimizu K, Kim SU, Ikenaka K (2001) MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res 61:4809–4814PubMedGoogle Scholar
  43. 43.
    Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN (2007) Molecularly targeted therapy for malignant glioma. Cancer 110(1):13–24PubMedCrossRefGoogle Scholar
  44. 44.
    Scarcella DL (1999) Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res 5:335–341PubMedGoogle Scholar
  45. 45.
    Schneider T, Sailer M, Ansorge S, Firsching R, Reinhold D (2006) Increased concentrations of transforming growth factor beta1 and beta2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65PubMedCrossRefGoogle Scholar
  46. 46.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  47. 47.
    Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, Bauer H, Kiessling M, Kunze S, Schirrmacher V, Herold-Mende C (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272–4281PubMedCrossRefGoogle Scholar
  48. 48.
    Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomized trials. Lancet 359:1011–1018PubMedCrossRefGoogle Scholar
  49. 49.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  50. 50.
    Tsuda N, Mochizuki K, Harada M, Sukehiro A, Kawano K, Yamada A, Ushijima K, Sugiyama T, Nishida T, Yamana H, Itoh K, Kamura T (2004) Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers. J Immunother 27:60–72PubMedCrossRefGoogle Scholar
  51. 51.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725PubMedCrossRefGoogle Scholar
  52. 52.
    Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y, Toda M (2004) Identification of a human glioma antigen, SOX6, recognized by patients’ sera. Oncogene 23:1420–1427PubMedCrossRefGoogle Scholar
  53. 53.
    Ueda R, Yoshida K, Kawase T, Kawakami Y, Toda M (2007) Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 120:1704–1711PubMedCrossRefGoogle Scholar
  54. 54.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  55. 55.
    Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617PubMedCrossRefGoogle Scholar
  56. 56.
    Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326PubMedCrossRefGoogle Scholar
  57. 57.
    Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M (2005) HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuropathol Exp Neurol 64(6):523–528PubMedGoogle Scholar
  58. 58.
    Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, Kuramoto T, Obata Y, Komatsu N, Arima Y, Yamada A, Shigemori M, Itoh K, Tanaka R (2005) Immunological evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 11:5900–5911PubMedCrossRefGoogle Scholar
  59. 59.
    Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179PubMedCrossRefGoogle Scholar
  60. 60.
    Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167PubMedCrossRefGoogle Scholar
  61. 61.
    Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847PubMedGoogle Scholar
  62. 62.
    Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979PubMedCrossRefGoogle Scholar
  63. 63.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Research Center of Innovative Cancer TherapyKurume University School of MedicineKurumeJapan

Personalised recommendations