Neurosurgical Review

, 31:359 | Cite as

The molecular genetics of medulloblastoma: an assessment of new therapeutic targets

  • Carlos G. Carlotti Jr
  • Christian Smith
  • James T. Rutka


Medulloblastoma is the most common pediatric primary malignant intracranial neoplasm. The 5-year survival rates vary from 40% to 70% depending on clinical prognostic criteria, and many of the patients who survive exhibit long-term neurocognitive and/or neuroendocrine sequelae. Because of these results, research is required to increase our understanding of the basic biology of medulloblastoma, helping to refine patient stratification, decrease side effects of treatments, identify novel prognostic markers, and discover new less toxic therapies. The recognition that some medulloblastomas occur in familial cancer syndromes has led to some important discoveries in the molecular pathogenesis of medulloblastoma. These syndromes provide us with clues regarding alterations in key signaling or growth factor activation pathways that contribute to medulloblastoma formation. A better understanding of the molecular pathways involved in medulloblastoma formation may allow the discovery of new drugs that act on specific targets, yet many steps must still be taken before clinical use of new drugs. In addition, the identification of a novel signaling pathways in medulloblastoma is often accompanied by the quest for novel pharmacotherapeutics that have the potential to act favorably on this disease.


Medulloblastoma Familial cancer syndromes Hedgehog pathway Wnt pathway Notch pathway Cyclopamine 



Dr. Rutka is a Scientist of the Canadian Institutes of Health Research. This work was supported in part by funds through the National Cancer Institute of Canada, the Ontario Cancer Research Network, Brainchild, and the Laurie Berman and Wiley Funds for Brain Tumor Research. Dr. Carlotti was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Brazil.


  1. 1.
    Baeza N, Masuoka J, Kleihues P, Ohgaki H (2003) Axin1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22:632–636PubMedCrossRefGoogle Scholar
  2. 2.
    Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC (2005) Negative regulation of gli1 and gli2 activator function by suppressor of fused through multiple mechanisms. Differentiation 73:397–405PubMedCrossRefGoogle Scholar
  3. 3.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561PubMedCrossRefGoogle Scholar
  4. 4.
    Browd SR, Kenney AM, Gottfried ON, Yoon JW, Walterhouse D, Pedone CA, Fults DW (2006) N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66:2666–2672PubMedCrossRefGoogle Scholar
  5. 5.
    Corcoran RB, Scott MP (2001) A mouse model for medulloblastoma and basal cell nevus syndrome. J Neurooncol 53:307–318PubMedCrossRefGoogle Scholar
  6. 6.
    Corcoran RB, Scott MP (2006) Oxysterols stimulate sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci U S A 103:8408–8413PubMedCrossRefGoogle Scholar
  7. 7.
    Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–1085PubMedCrossRefGoogle Scholar
  8. 8.
    Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T (2001) Deletions of axin1, a component of the Wnt/wingless pathway, in sporadic medulloblastomas. Cancer Res 61:7039–7043PubMedGoogle Scholar
  9. 9.
    Del Valle L, Enam S, Lassak A, Wang JY, Croul S, Khalili K, Reiss K (2002) Insulin-like growth factor i receptor activity in human medulloblastomas. Clin Cancer Res 8:1822–1830PubMedGoogle Scholar
  10. 10.
    Dellovade T, Romer JT, Curran T, Rubin LL (2006) The hedgehog pathway and neurological disorders. Annu Rev Neurosci 29:539–563PubMedCrossRefGoogle Scholar
  11. 11.
    Eberhart CG, Tihan T, Burger PC (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59:333–337PubMedGoogle Scholar
  12. 12.
    Ehlen HW, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 78:267–279PubMedCrossRefGoogle Scholar
  13. 13.
    Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: The united kingdom children's cancer study group brain tumour committee. J Clin Oncol 23:7951–7957PubMedCrossRefGoogle Scholar
  14. 14.
    Friedrich RE (2007) Diagnosis and treatment of patients with nevoid basal cell carcinoma syndrome [Gorlin–Goltz syndrome (GGS)]. Anticancer Res 27:1783–1787PubMedGoogle Scholar
  15. 15.
    Fuccillo M, Joyner AL, Fishell G (2006) Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7:772–783PubMedCrossRefGoogle Scholar
  16. 16.
    Geyer JR, Sposto R, Jennings M, Boyett JM, Axtell RA, Breiger D, Broxson E, Donahue B, Finlay JL, Goldwein JW, Heier LA, Johnson D, Mazewski C, Miller DC, Packer R, Puccetti D, Radcliffe J, Tao ML, Shiminski-Maher T (2005) Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the children’s cancer group. J Clin Oncol 23:7621–7631PubMedCrossRefGoogle Scholar
  17. 17.
    Giangaspero F, Eberhart CG, Haapasalo H, Pietsch T, Wiestler OD, Ellison DW (2007) Medulloblastoma. In: Louis DN, Ohgaki H, Wistler OD, Cavenne WK (eds) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lion, pp 132–140Google Scholar
  18. 18.
    Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J (1997) Prognostic significance of her2 and her4 coexpression in childhood medulloblastoma. Cancer Res 57:3272–3280PubMedGoogle Scholar
  19. 19.
    Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218PubMedCrossRefGoogle Scholar
  20. 20.
    Grill J, Sainte-Rose C, Jouvet A, Gentet JC, Lejars O, Frappaz D, Doz F, Rialland X, Pichon F, Bertozzi AI, Chastagner P, Couanet D, Habrand JL, Raquin MA, Le Deley MC, Kalifa C (2005) Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6:573–580PubMedCrossRefGoogle Scholar
  21. 21.
    Grill J, Bhangoo R (2007) Recent development in chemotherapy of paediatric brain tumours. Curr Opin Oncol 19:612–615PubMedGoogle Scholar
  22. 22.
    Hamada H, Kurimoto M, Endo S, Ogiichi T, Akai T, Takaku A (1998) Turcot’s syndrome presenting with medulloblastoma and familiar adenomatous polyposis: a case report and review of the literature. Acta Neurochir (Wien) 140:631–632CrossRefGoogle Scholar
  23. 23.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedCrossRefGoogle Scholar
  24. 24.
    Hartmann W, Digon-Sontgerath B, Koch A, Waha A, Endl E, Dani I, Denkhaus D, Goodyer CG, Sorensen N, Wiestler OD, Pietsch T (2006) Phosphatidylinositol 3¢-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 12:3019–3027PubMedCrossRefGoogle Scholar
  25. 25.
    Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alboran IM, Olson JM, Eisenman RN (2006) N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 66:8655–8661PubMedCrossRefGoogle Scholar
  26. 26.
    Hernan R, Fasheh R, Calabrese C, Frank AJ, Maclean KH, Allard D, Barraclough R, Gilbertson RJ (2003) ErbB2 up-regulates s100a4 and several other prometastatic genes in medulloblastoma. Cancer Res 63:140–148PubMedGoogle Scholar
  27. 27.
    Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437PubMedGoogle Scholar
  28. 28.
    Ingham PW, Placzek M (2006) Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat Rev Genet 7:841–850PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson ML, Rajamannan N (2006) Diseases of Wnt signaling. Rev Endocr Metab Disord 7:41–49PubMedCrossRefGoogle Scholar
  30. 30.
    Kelleher FC, Fennelly D, Rafferty M (2006) Common critical pathways in embryogenesis and cancer. Acta Oncol 45:375–388PubMedCrossRefGoogle Scholar
  31. 31.
    Kim JY, Nelson AL, Algon SA, Graves O, Sturla LM, Goumnerova LC, Rowitch DH, Segal RA, Pomeroy SL (2003) Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Dev Biol 263:50–66PubMedCrossRefGoogle Scholar
  32. 32.
    Kimonis VE, Goldstein AM, Pastakia B, Yang ML, Kase R, DiGiovanna JJ, Bale AE, Bale SJ (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69:299–308PubMedCrossRefGoogle Scholar
  33. 33.
    Kiselyov AS (2006) Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med Chem 6:445–449PubMedCrossRefGoogle Scholar
  34. 34.
    Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of gli-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104:8455–8460PubMedCrossRefGoogle Scholar
  35. 35.
    Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, Toftgard R, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ (2006) Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 38:1204–1209PubMedCrossRefGoogle Scholar
  36. 36.
    Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447PubMedCrossRefGoogle Scholar
  37. 37.
    Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922PubMedCrossRefGoogle Scholar
  38. 38.
    Liu H, Mohamed O, Dufort D, Wallace VA (2003) Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn 227:323–334PubMedCrossRefGoogle Scholar
  39. 39.
    Malmer B, Feychting M, Lonn S, Ahlbom A, Henriksson R (2005) P53 genotypes and risk of glioma and meningioma. Cancer Epidemiol Biomarkers Prev 14:2220–2223PubMedCrossRefGoogle Scholar
  40. 40.
    Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22PubMedCrossRefGoogle Scholar
  41. 41.
    Mazzola CA, Pollack IF (2003) Medulloblastoma. Curr Treat Options Neurol 5:189–198PubMedCrossRefGoogle Scholar
  42. 42.
    McCabe MG, Ichimura K, Liu L, Plant K, Backlund LM, Pearson DM, Collins VP (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65:549–561PubMedCrossRefGoogle Scholar
  43. 43.
    Mendrzyk F, Korshunov A, Toedt G, Schwarz F, Korn B, Joos S, Hochhaus A, Schoch C, Lichter P, Radlwimmer B (2006) Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes Cancer 45:401–410PubMedCrossRefGoogle Scholar
  44. 44.
    Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P, Krull K, Chintagumpala M, Stargatt R, Ashley DM, Tyc VL, Kun L, Boyett J, Gajjar A (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519PubMedCrossRefGoogle Scholar
  45. 45.
    Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F, Golanov A, Joos S, Lichter P (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 64:3103–3111PubMedCrossRefGoogle Scholar
  46. 46.
    Ng D, Stavrou T, Liu L, Taylor MD, Gold B, Dean M, Kelley MJ, Dubovsky EC, Vezina G, Nicholson HS, Byrne J, Rutka JT, Hogg D, Reaman GH, Goldstein AM (2005) Retrospective family study of childhood medulloblastoma. Am J Med Genet A 134:399–403PubMedGoogle Scholar
  47. 47.
    Packer RJ, Cogen P, Vezina G, Rorke LB (1999) Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1:232–250PubMedCrossRefGoogle Scholar
  48. 48.
    Packer RJ, Rood BR, MacDonald TJ (2003) Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg 39:60–67PubMedCrossRefGoogle Scholar
  49. 49.
    Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG, Burger PC, Biegel JA, Feuerstein BG (2005) Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 11:4733–4740PubMedCrossRefGoogle Scholar
  50. 50.
    Paraf F, Jothy S, Van Meir EG (1997) Brain tumor-polyposis syndrome: two genetic diseases? J Clin Oncol 15:2744–2758PubMedGoogle Scholar
  51. 51.
    Pizem J, Cort A, Zadravec-Zaletel L, Popovic M (2005) Survivin is a negative prognostic marker in medulloblastoma. Neuropathol Appl Neurobiol 31:422–428PubMedCrossRefGoogle Scholar
  52. 52.
    Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57:842–845PubMedGoogle Scholar
  53. 53.
    Ray A, Ho M, Ma J, Parkes RK, Mainprize TG, Ueda S, McLaughlin J, Bouffet E, Rutka JT, Hawkins CE (2004) A clinicobiological model predicting survival in medulloblastoma. Clin Cancer Res 10:7613–7620PubMedCrossRefGoogle Scholar
  54. 54.
    Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803PubMedGoogle Scholar
  55. 55.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  56. 56.
    Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA (2005) Outcome of medulloblastoma in children: Long-term complications and quality of life. Neuropediatrics 36:357–365PubMedCrossRefGoogle Scholar
  57. 57.
    Rice JM (2006) Inducible and transmissible genetic events and pediatric tumors of the nervous system. J Radiat Res (Tokyo) 47(Suppl B):B1–B11CrossRefGoogle Scholar
  58. 58.
    Romer J, Curran T (2005) Targeting medulloblastoma: small-molecule inhibitors of the sonic hedgehog pathway as potential cancer therapeutics. Cancer Res 65:4975–4978PubMedCrossRefGoogle Scholar
  59. 59.
    Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6:229–240PubMedCrossRefGoogle Scholar
  60. 60.
    Rood BR, Zhang H, Weitman DM, Cogen PH (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62:3794–3797PubMedGoogle Scholar
  61. 61.
    Rossi MR, Conroy J, McQuaid D, Nowak NJ, Rutka JT, Cowell JK (2006) Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 45:290–303PubMedCrossRefGoogle Scholar
  62. 62.
    Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRefGoogle Scholar
  63. 63.
    Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R (2006) Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in hedgehog expressing pancreatic cancer cells. Cancer Chemother Pharmacol 58:765–770PubMedCrossRefGoogle Scholar
  64. 64.
    Sharghi-Namini S, Turmaine M, Meier C, Sahni V, Umehara F, Jessen KR, Mirsky R (2006) The structural and functional integrity of peripheral nerves depends on the glial-derived signal desert hedgehog. J Neurosci 26:6364–6376PubMedCrossRefGoogle Scholar
  65. 65.
    Shu Q, Antalffy B, Su JM, Adesina A, Ou CN, Pietsch T, Blaney SM, Lau CC, Li XN (2006) Valproic acid prolongs survival time of severe combined immunodeficient mice bearing intracerebellar orthotopic medulloblastoma xenografts. Clin Cancer Res 12:4687–4694PubMedCrossRefGoogle Scholar
  66. 66.
    Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H (2005) The notch pathway in cancer: differentiation gone awry. Eur J Cancer 41:2620–2629PubMedCrossRefGoogle Scholar
  67. 67.
    Strahm B, Malkin D (2006) Hereditary cancer predisposition in children: genetic basis and clinical implications. Int J Cancer 119:2001–2006PubMedCrossRefGoogle Scholar
  68. 68.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature 406:1005–1009PubMedCrossRefGoogle Scholar
  69. 69.
    Tas S, Avci O (2004) Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 209:126–131PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor MD, Mainprize TG, Rutka JT (2000) Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 47:888–901PubMedCrossRefGoogle Scholar
  71. 71.
    Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310PubMedCrossRefGoogle Scholar
  72. 72.
    Taylor MD, Zhang X, Liu L, Hui CC, Mainprize TG, Scherer SW, Wainwright B, Hogg D, Rutka JT (2004) Failure of a medulloblastoma-derived mutant of SUFU to suppress Wnt signaling. Oncogene 23:4577–4583PubMedCrossRefGoogle Scholar
  73. 73.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931PubMedCrossRefGoogle Scholar
  74. 74.
    Van Meir EG (1998) “Turcot’s syndrome”: phenotype of brain tumors, survival and mode of inheritance. Int J Cancer 75:162–164PubMedCrossRefGoogle Scholar
  75. 75.
    Wlodarski P, Grajkowska W, Lojek M, Rainko K, Jozwiak J (2006) Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 44:214–220PubMedGoogle Scholar
  76. 76.
    Yokota N, Nishizawa S, Ohta S, Date H, Sugimura H, Namba H, Maekawa M (2002) Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101:198–201PubMedCrossRefGoogle Scholar
  77. 77.
    Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27:44–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Carlos G. Carlotti Jr
    • 1
  • Christian Smith
    • 2
  • James T. Rutka
    • 2
  1. 1.Division of Neurosurgery, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.The Division of Neurosurgery, Suite 1503, The Hospital for Sick Children, and The Arthur and Sonia Labatt Brain Tumour Research CentreThe University of TorontoTorontoCanada

Personalised recommendations