Neurosurgical Review

, Volume 31, Issue 2, pp 179–188 | Cite as

Morphometric analysis of untreated adult skulls in syndromic and nonsyndromic craniosynostosis

  • J. Weber
  • H. Collmann
  • A. Czarnetzki
  • A. Spring
  • C. M. Pusch
Original Article


The aim of this study was to perform a morphometric analysis of untreated adult skulls displaying syndromic and nonsyndromic craniosynostosis. We analyzed, in detail, 42 adult craniosynostoses (18 scaphocephaly, 11 anterior plagiocephaly, 2 trigonocephaly, 9 oxycephaly, and 2 brachycephaly) from archeological (three skulls) and pathoanatomical samples (39 skulls). The univariate and bivariate measurements from the pathological skulls were compared with 40 anatomical skulls with normal cranial vault morphology. Bony signs of chronic elevated intracranial pressure (ICP) are (1) diffuse beaten copper pattern, (2) dorsum sellae erosion, (3) suture diastasis, and (4) abnormalities of venous drainage that particularly affect the sigmoid–jugular sinus complex. The mean cranial length was significantly greater in scaphocephaly than in anatomical skulls (20.3 vs 18.0 cm), and the sagittal suture was also longer (14.3 vs 11.8 cm). There were three types of suture course in the bregma region in scaphocephaly: anterior spur (28%), normal configuration (61%), and posterior spur (11%). The plagiocephaly measurements showed nonsignificant differences, and there was no correlation between the length of the anterior and middle skull base (ipsilateral anterior–posterior shortening of the skull) and incomplete or complete suture synostosis. Bony signs of chronic elevated ICP were found in 82% of cases of oxycephaly and brachycephaly. In three such cases of oxycephaly, we found a marked (1.8–2.1 cm) elevation of bregma region. One skull (Saethre–Chotzen syndrome) yielded human DNA sufficient for polymerase chain reaction (PCR)-based amplification procedures. Mutation analyses in the FGFR3 gene revealed nucleotide alterations located in the mutational hot spot at amino acid residue 250 (g.C749). The mean cranial length in adult scaphocephaly was 12% greater than anatomical skulls. A unilateral complete or incomplete coronal synostosis can be found with or without plagiocephalic deformation. Elevation of the bregma region is a bony sign of chronic elevated ICP. These data on adult craniosynostosis could be of interest for physicians dealing with craniosynostotic children.


Craniosynostosis Pathological anatomy Scaphocephaly Plagiocephaly Brachycephaly Oxycephaly FGFR3 gene Mutation 


  1. 1.
    Berrizbeitia EL (1992) Case report no. 17: Oxycephalus: an extreme case of craniosynostosis; specimen number: 2625, Museo de Ciencias Naturales de Caracas. Paleopathol Newsl 77:12–15PubMedGoogle Scholar
  2. 2.
    Campillo D, Carvajal A (1997) Study of craniostenosis and similar conditions by vestibular craniometry using computerized tomography. Int J Osteoarchaeol 7:636–640CrossRefGoogle Scholar
  3. 3.
    Chun K, Teebi AS, Jung JH et al (2002) Genetic analysis of patients with the Saethre-Chotzen phenotype. Am J Med Genet 110:136–143PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen MM (1993) Sutural biology and the correlates of craniosynostosis. Am J Med Genet 47:581–616PubMedCrossRefGoogle Scholar
  5. 5.
    Collmann H, Sörensen N, Krauss J (1999) Craniosynostosis–treatment, results, and complications. In: Choux M, Di Rocco C, Hockley A, Walker M (eds) Pediatric Neurosurgery. Churchill Livingstone, LondonGoogle Scholar
  6. 6.
    David JD, Poswillo D, Simpson D (1982) The Craniosynostoses: causes, natural history and managements. Springer, New YorkGoogle Scholar
  7. 7.
    El Ghouzzi V, Lajeunie E, Le Merrer M et al (1999) Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre–Chotzen syndrome. Eur J Hum Genet 7:27–33PubMedCrossRefGoogle Scholar
  8. 8.
    Flores-Sarnat L (2002) New insights into craniosynostosis. Semin Pediatr Neurol 9:274–291PubMedCrossRefGoogle Scholar
  9. 9.
    Fok H, Jones BM, Gault D et al (1992) Relationship between intracranial pressure and intracranial volume in craniosynostosis. Br J Plast Surg 45:394–397PubMedCrossRefGoogle Scholar
  10. 10.
    Gault DT, Renier D, Marchac D et al (1990) Intracranial volume in children with craniosynostosis. J Craniofacial Surg 1:1–3CrossRefGoogle Scholar
  11. 11.
    Gault DT, Renier D, Marchac D et al (1992) Intracranial pressure and intracranial volume in children with craniosynostosis. Plast Reconstr Surg 90:377–381PubMedCrossRefGoogle Scholar
  12. 12.
    Golla A, Lichmer P, von Gernet S et al (1997) Phenotypic expression of the fibroblast growth factor receptor 3 (FGFR3) mutation P250R in a large craniosynostosis family. J Med Genet 34:683–684PubMedCrossRefGoogle Scholar
  13. 13.
    Henderson P, Marlow CA, Molleson TI et al (1983) Patterns of chemical change during bone fossilization. Nature 306:358–360CrossRefGoogle Scholar
  14. 14.
    Hollway GE, Suthers GK, Battese KM et al (1998) Deafness due to Pro250Arg mutation of FGFR3. Lancet 351:877–878PubMedCrossRefGoogle Scholar
  15. 15.
    Jayesh P, Hamid A, Robin G (2001) Neurodevelopment in children with single-suture craniosynostosis and plagiocephaly without synostosis. Plast Reconstr Surg 108:1492–1498CrossRefGoogle Scholar
  16. 16.
    Kennedy KA, Lovell NC, Lukacs JR et al (1993) Scaphocephaly in a prehistoric skeleton from Harrappa, Pakistan. Anthropol Anz 51:1–29PubMedGoogle Scholar
  17. 17.
    Kohn LA, Vannier MW, Marsh JL et al (1994) Effect of premature sagittal suture closure on craniofacial morphology in a prehistoric male Hopi. Cleft Palate Craniofac J 31:385–396PubMedCrossRefGoogle Scholar
  18. 18.
    Kreiborg S, Bjork A (1982) Description of a dry skull with Crouzon syndrome. Scand J Plast Reconstr Surg 16:245–253PubMedCrossRefGoogle Scholar
  19. 19.
    Mann RW (1990) Enlarged parietal foramina and craniosynostosis in an American Indian child. AJR 154:658Google Scholar
  20. 20.
    Moloney DM, Wall SA, Ashworth GJ et al (1997) Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 349:1059–1062PubMedCrossRefGoogle Scholar
  21. 21.
    Montaut J, Stricker M (1977) Les Dysmorphies Cranio-Faciales. Masson, Paris, pp 90–98Google Scholar
  22. 22.
    Muenke M, Gripp KW, McDonald-McGinn DM et al (1997) A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet 60:555–564PubMedGoogle Scholar
  23. 23.
    Oostra RJ, van der Wolk S, Maas M (2005) Malformations of the axial skeleton in the Museum Vrolik II: Craniosynostoses and suture-related conditions. Am J Med Genet 136A:327–342CrossRefPubMedGoogle Scholar
  24. 24.
    Paznekas WA, Cunningham ML, Howard TD et al (1998) Genetic heterogeneity of Saethre-Chotzen syndrome, due to TWIST and FGFR mutations. Am J Hum Genet 62:1370–1380PubMedCrossRefGoogle Scholar
  25. 25.
    Pusch CM, Bachmann L, Broghammer M et al (2000) Internal Alu-polymerase chain reaction: a sensitive contamination monitoring protocol for DNA extracted from prehistoric animal bones. Anal Biochem 284:408–411PubMedCrossRefGoogle Scholar
  26. 26.
    Pusch CM, Broghammer M, Czarnetzki A (2001) Molekulare Paläobiologie: Ancient DNA und Authentizität [Palaeobiological research: ancient DNA and authenticity]. Germania 79:121–141Google Scholar
  27. 27.
    Pusch CM, Broghammer M, Bin N (2003) Molecular phylogenetics employing modern and ancient DNA. J Appl Genet 44:269–290PubMedGoogle Scholar
  28. 28.
    Pusch CM, Bachmann L (2004) Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates nonauthentic mitochondrial sequences. Mol Biol Evol 21:957–964PubMedCrossRefGoogle Scholar
  29. 29.
    Pusch CM, Broghammer M, Nicholson GJ et al (2004) PCR-induced sequence alterations hamper the typing of prehistoric bone samples for diagnostic achondroplasia mutations. Mol Biol Evol 21:2005–2011PubMedCrossRefGoogle Scholar
  30. 30.
    Renier D, Marchac D (1995) Oxycephaly: an often complex diagnosis with a review of surgical management. In: Goodrich JT, Hall CD (eds) Craniofacial anomalies: growth and development from a surgical perspective. Thieme, New York, pp 56–64Google Scholar
  31. 31.
    Rich PM, Cox TC, Hayward RD (2003) The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR 24:45–51PubMedGoogle Scholar
  32. 32.
    Sainte-Rose C, LaCombe J, Pierre A et al (1984) Intracranial venous sinus hypertension. J Neurosurg 60:727–737PubMedGoogle Scholar
  33. 33.
    Sun PP, Persing JA (1999) Craniosynostosis. In: Albright AL, Pollack IF, Andelson PD: Principles and Practice of Pediatric Neurosurgery. Thieme, New YorkGoogle Scholar
  34. 34.
    Taylor WP, Hayward RD, Lasjaunias P et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385PubMedGoogle Scholar
  35. 35.
    Tuite GF, Evanson J, Chong WK et al (1996) The beaten copper cranium: a correlation between intracranial pressure, cranial radiographs, and computed tomographic scans in children with craniosynostosis. Neurosurgery 39:691–699PubMedCrossRefGoogle Scholar
  36. 36.
    Tulasne JF (1985) Skulls with unilateral coronal synostosis. In: Marchac D (ed) Craniofacial surgery, proceeding of the first international congress of the international society of cranio–maxillo–facial surgery. Springer, BerlinGoogle Scholar
  37. 37.
    Virchow R (1851) Ueber den Cretinismus, namentlich in Franken, und über pathologische Schädelformen. Verh Phys Med Ges Würzburg 2(number 16):230–271Google Scholar
  38. 38.
    Virchow R (1858) Knochenwachstum und Schädelform, mit besonderer Rücksicht auf Cretinismus. Arch Pathol Anat Physiol Klin Med 13:323–357Google Scholar
  39. 39.
    Volmer DG, Jane JA, Park TS et al (1984) Variants of sagittal synostosis: strategies for surgical correction. J Neurosurg 61:557–562Google Scholar
  40. 40.
    Weber J, Czarnetzki A, Spring A (2003) Acquired sagittal suture diastasis in an infant skull from the early medieval period—a sign of raised intracranial pressure. Acta Neurochir 145:233–234CrossRefGoogle Scholar
  41. 41.
    Weber J, Czarnetzki A, Pusch C M (2004) Paleopathological examination of medieval spines with exceptional thoracic kyphosis most likely secondary to spinal tuberculosis. J Neurosurg (Spine1) 2:238–242Google Scholar
  42. 42.
    White TD, Folkens (2000) Human osteology. Academic, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Weber
    • 1
    • 6
  • H. Collmann
    • 2
  • A. Czarnetzki
    • 3
  • A. Spring
    • 4
  • C. M. Pusch
    • 5
  1. 1.Department of NeurosurgeryTrauma Center BerlinBerlinGermany
  2. 2.Division of Pediatric Neurosurgery, Department of NeurosurgeryUniversity of WürzburgWürzburgGermany
  3. 3.Paleoanthropology and OsteologyUniversity of TübingenTübingenGermany
  4. 4.Department of NeurosurgeryLeopoldina HospitalSchweinfurtGermany
  5. 5.Division of Molecular Genetics, Institute of Anthropology and Human GeneticsUniversity of TübingenTübingenGermany
  6. 6.Klinik für NeurochirurgieUnfallkrankenhaus BerlinBerlinGermany

Personalised recommendations