Neurosurgical Review

, Volume 28, Issue 4, pp 249–255 | Cite as

Role of biofilms in neurosurgical device-related infections

  • Ernest E. BraxtonJr
  • Garth D. EhrlichEmail author
  • Luanne Hall-Stoodley
  • Paul Stoodley
  • Rick Veeh
  • Christoph Fux
  • Fen Z. Hu
  • Matthew Quigley
  • J. Christopher Post


Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention.


Biofilms Central nervous system infections Neurosurgery Medical devices 


  1. 1.
    Abbey DM, Turner DM, Warson JS, Wirt TC, Scalley RD (1995) Treatment of postoperative wound infections following spinal fusion with instrumentation. J Spinal Disord 8:278–283PubMedGoogle Scholar
  2. 2.
    Adams H, Winston MT, Heersink J, Buckingham-Meyer KA, Costerton JW, Stoodley P (2002) Development of a laboratory model to assess the removal of biofilm from interproximal spaces by powered tooth brushing. Am J Dent 15(Spec No):12B–17BPubMedGoogle Scholar
  3. 3.
    Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256CrossRefPubMedGoogle Scholar
  4. 4.
    Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW (1989) Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 33:1824–1826PubMedGoogle Scholar
  5. 5.
    Bayston R, Ashraf W, Bhundia C (2004) Mode of action of an antimicrobial biomaterial for use in hydrocephalus shunts. J Antimicrob Chemother 53:778–782CrossRefPubMedGoogle Scholar
  6. 6.
    Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23:254–258; discussion 259PubMedGoogle Scholar
  7. 7.
    Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664CrossRefPubMedGoogle Scholar
  8. 8.
    Cagavi F, Akalan N, Celik H, Gur D, Guciz B (2004) Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochir (Wien) 146:603–610; discussion 609–610CrossRefGoogle Scholar
  9. 9.
    Caiazza NC, O’Toole GA (2003) Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol 185:3214–3217CrossRefPubMedGoogle Scholar
  10. 10.
    Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg Spine 100:254–267Google Scholar
  11. 11.
    Chole RA, Faddis BT (2002) Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg 128:1129–1133PubMedGoogle Scholar
  12. 12.
    Cook G, Costerton JW, Darouiche RO (2000) Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff. Int J Antimicrob Agents 13:169–173CrossRefPubMedGoogle Scholar
  13. 13.
    Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95PubMedGoogle Scholar
  14. 14.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  15. 15.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefPubMedGoogle Scholar
  16. 16.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477CrossRefPubMedGoogle Scholar
  17. 17.
    Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433PubMedGoogle Scholar
  18. 18.
    Cryer J, Schipor I, Perloff JR, Palmer JN (2004) Evidence of bacterial biofilms in human chronic sinusitis. ORL J Otorhinolaryngol Relat Spec 66:155–158PubMedGoogle Scholar
  19. 19.
    Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896CrossRefPubMedGoogle Scholar
  20. 20.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  21. 21.
    Davis LE, Cook G, Costerton JW (2002) Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379PubMedGoogle Scholar
  22. 22.
    Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD, Hu FZ, Daigle BJ, Ehrlich MD, Post JC (2002) Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287:1710–1715CrossRefPubMedGoogle Scholar
  23. 23.
    Elves AW, Feneley RC (1997) Long-term urethral catheterization and the urine-biomaterial interface. Br J Urol 80:1–5Google Scholar
  24. 24.
    Esses SI (1989) The AO spinal internal fixator. Spine 14:373–378PubMedGoogle Scholar
  25. 25.
    Foerch C, Lang JM, Krause J, Raabe A, Sitzer M, Seifert V, Steinmetz H, Kessler KR (2004) Functional impairment, disability, and quality of life outcome after decompressive hemicraniectomy in malignant middle cerebral artery infarction. J Neurosurg 101:248–254PubMedGoogle Scholar
  26. 26.
    Fowler VG Jr, Li J, Corey GR, Boley J, Marr KA, Gopal AK, Kong LK, Gottlieb G, Donovan CL, Sexton DJ, Ryan T (1997) Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients. J Am Coll Cardiol 30:1072–1078CrossRefPubMedGoogle Scholar
  27. 27.
    Froeliger EH, Fives-Taylor P (2001) Streptococcus parasanguis fimbria-associated adhesin fap1 is required for biofilm formation. Infect Immun 69:2512–2519CrossRefPubMedGoogle Scholar
  28. 28.
    Gavin R, Rabaan AA, Merino S, Tomas JM, Gryllos I, Shaw JG (2002) Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 43:383–397CrossRefPubMedGoogle Scholar
  29. 29.
    Gristina AG, Oga M, Webb LX, Hobgood CD (1985) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993Google Scholar
  30. 30.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefPubMedGoogle Scholar
  31. 31.
    Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233CrossRefPubMedGoogle Scholar
  32. 32.
    Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713Google Scholar
  33. 33.
    Heller JG, Garfin SR (1990) Postoperative infection of the spine. Semin Spine Surg 2:268–282Google Scholar
  34. 34.
    Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105PubMedGoogle Scholar
  35. 35.
    Hyde JA, Darouiche RO, Costerton JW (1998) Strategies for prophylaxis against prosthetic valve endocarditis: a review article. J Heart Valve Dis 7:316–326PubMedGoogle Scholar
  36. 36.
    Iwama T, Yamada J, Imai S, Shinoda J, Funakoshi T, Sakai N (2003) The use of frozen autogenous bone flaps in delayed cranioplasty revisited. Neurosurgery 52:591–596; discussion 595–596CrossRefPubMedGoogle Scholar
  37. 37.
    Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs KU, Hayes JM, Des Marais DJ, Cady SL, Summons RE (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189Google Scholar
  38. 38.
    Khoury AE, Lam K, Ellis B, Costerton JW (1992) Prevention and control of bacterial infections associated with medical devices. Asaio J 38:M174–M178PubMedGoogle Scholar
  39. 39.
    Klug D, Wallet F, Kacet S, Courcol RJ (2003) Involvement of adherence and adhesion Staphylococcus epidermidis genes in pacemaker lead-associated infections. J Clin Microbiol 41:3348–3350CrossRefPubMedGoogle Scholar
  40. 40.
    Kockro RA, Hampl JA, Jansen B, Peters G, Scheihing M, Giacomelli R, Kunze S, Aschoff A (2000) Use of scanning electron microscopy to investigate the prophylactic efficacy of rifampin-impregnated CSF shunt catheters. J Med Microbiol 49:441–450Google Scholar
  41. 41.
    Kostuik JP, Israel J, Hall JE (1973) Scoliosis surgery in adults. Clin Orthop 93:225–234PubMedGoogle Scholar
  42. 42.
    Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567PubMedGoogle Scholar
  43. 43.
    Levi AD, Dickman CA, Sonntag VK (1997) Management of postoperative infections after spinal instrumentation. J Neurosurg 86:975–980PubMedGoogle Scholar
  44. 44.
    Lonstein J (1989) Management of post-operative spine infections. Saunders, PhiladelphiaGoogle Scholar
  45. 45.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532CrossRefPubMedGoogle Scholar
  46. 46.
    Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES Jr (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51:170–181; discussion 181–172CrossRefPubMedGoogle Scholar
  47. 47.
    Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66:1339–1341PubMedGoogle Scholar
  48. 48.
    Massie JB, Heller JG, Abitbol JJ, McPherson D, Garfin SR (1992) Postoperative posterior spinal wound infections. Clin Orthop 284:99–108Google Scholar
  49. 49.
    McGirt MJ, Zaas A, Fuchs HE, George TM, Kaye K, Sexton DJ (2003) Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin Infect Dis 36:858–862CrossRefPubMedGoogle Scholar
  50. 50.
    Meglio M, Cioni B, Rossi GF (1989) Spinal cord stimulation in management of chronic pain. A 9-year experience. J Neurosurg 70:519–524PubMedGoogle Scholar
  51. 51.
    Murphy TF, Kirkham C (2002) Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol 2:7CrossRefPubMedGoogle Scholar
  52. 52.
    Nickel JC, Costerton JW, McLean RJ, Olson M (1994) Bacterial biofilms: influence on the pathogenesis, diagnosis and treatment of urinary tract infections. J Antimicrob Chemother 33(Suppl A):31–41PubMedGoogle Scholar
  53. 53.
    Nickel JC, Wright JB, Ruseska I, Marrie TJ, Whitfield C, Costerton JW (1985) Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. Eur J Clin Microbiol 4:213–218PubMedGoogle Scholar
  54. 54.
    Odom GL, Woodhall B, Wrenn FR (1952) The use of refrigerated autogenous bone flaps for cranioplasty. J Neurosurg 9:606–610PubMedGoogle Scholar
  55. 55.
    Paramore C, Sonntag V (1995) Advances in spinal instrumentation. Jpn J Neurosurg 4:110–120Google Scholar
  56. 56.
    Passerini L, Lam K, Costerton JW, King EG (1992) Biofilms on indwelling vascular catheters. Crit Care Med 20:665–673PubMedGoogle Scholar
  57. 57.
    Post JC (2001) Direct evidence of bacterial biofilms in otitis media. Laryngoscope 111:2083–2094CrossRefPubMedGoogle Scholar
  58. 58.
    Post JC, Stoodley P, Hall-Stoodley L, Ehrlich GD (2004) The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 12:185–190PubMedGoogle Scholar
  59. 59.
    Quaade F, Vaernet K, Larsson S (1974) Stereotaxic stimulation, electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir 30:111–117CrossRefGoogle Scholar
  60. 60.
    Rasmussen B (2000) Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679CrossRefPubMedGoogle Scholar
  61. 61.
    Reysenbach AL, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86CrossRefPubMedGoogle Scholar
  62. 62.
    Richards BS (1995) Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg [Am] 77:524–529Google Scholar
  63. 63.
    Sackeim HA, Rush AJ, George MS, Marangell LB, Husain MM, Nahas Z, Johnson CR, Seidman S, Giller C, Haines S, Simpson RK Jr, Goodman RR (2001) Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25:713–728CrossRefPubMedGoogle Scholar
  64. 64.
    Sandoe JA, Longshaw CM (2001) Ventriculoperitoneal shunt infection caused by Staphylococcus lugdunensis. Clin Microbiol Infect 7:385–387CrossRefPubMedGoogle Scholar
  65. 65.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154CrossRefPubMedGoogle Scholar
  66. 66.
    Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751CrossRefPubMedGoogle Scholar
  67. 67.
    Stiefel MF, Heuer GG, Smith MJ, Bloom S, Maloney-Wilensky E, Gracias VH, Grady MS, LeRoux PD (2004) Cerebral oxygenation following decompressive hemicraniectomy for the treatment of refractory intracranial hypertension. J Neurosurg 101:241–247PubMedGoogle Scholar
  68. 68.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455CrossRefPubMedGoogle Scholar
  69. 69.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65:83–92CrossRefPubMedGoogle Scholar
  70. 70.
    Stoodley P, Hall-Stoodley L, Lappin-Scott HM (2001) Detachment, surface migration, and other dynamic behavior in bacterial biofilms revealed by digital time-lapse imaging. Methods Enzymol 337:306–319PubMedGoogle Scholar
  71. 71.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209CrossRefPubMedGoogle Scholar
  72. 72.
    Suci PA, Tyler BJ (2003) A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J Microbiol Methods 53:313–325CrossRefPubMedGoogle Scholar
  73. 73.
    Sundaresan N, Steinberger AA, Moore F, Sachdev VP, Krol G, Hough L, Kelliher K (1996) Indications and results of combined anterior-posterior approaches for spine tumor surgery. J Neurosurg 85:438–446PubMedGoogle Scholar
  74. 74.
    Torrens JK, Stanley PJ, Ragunathan PL, Bush DJ (1997) Risk of infection with electrical spinal-cord stimulation. Lancet 349:729CrossRefGoogle Scholar
  75. 75.
    Umemura A, Jaggi JL, Hurtig HI, Siderowf AD, Colcher A, Stern MB, Baltuch GH (2003) Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg 98:779–784PubMedGoogle Scholar
  76. 76.
    Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087CrossRefPubMedGoogle Scholar
  77. 77.
    Virden CP, Dobke MK, Stein P, Parsons CL, Frank DH (1992) Subclinical infection of the silicone breast implant surface as a possible cause of capsular contracture. Aesthetic Plast Surg 16:173–179CrossRefPubMedGoogle Scholar
  78. 78.
    Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323CrossRefPubMedGoogle Scholar
  79. 79.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487Google Scholar
  80. 80.
    Wong HK, Hee HT (2002) Instrumentation in spinal surgery. Ann Acad Med Singapore 31:579–589PubMedGoogle Scholar
  81. 81.
    Wood HL, Holden SR, Bayston R (2001) Susceptibility of Staphylococcus epidermidis biofilm in CSF shunts to bacteriophage attack. Eur J Pediatr Surg 11 (Suppl 1):S56–S57PubMedGoogle Scholar
  82. 82.
    Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M (2000) Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int J Med Microbiol 290:115–120PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ernest E. BraxtonJr
    • 1
  • Garth D. Ehrlich
    • 2
    • 3
    Email author
  • Luanne Hall-Stoodley
    • 2
  • Paul Stoodley
    • 2
  • Rick Veeh
    • 4
  • Christoph Fux
    • 4
  • Fen Z. Hu
    • 2
  • Matthew Quigley
    • 1
  • J. Christopher Post
    • 2
  1. 1.Department of NeurosurgeryAllegheny General HospitalPittsburghUSA
  2. 2.Center for Genomic SciencesAllegheny-Singer Research InstitutePittsburghUSA
  3. 3.Department of Microbiology and ImmunologyDrexel University College of MedicinePittsburghUSA
  4. 4.Center for Biofilm EngineeringMontana State UniversityBozemanUSA

Personalised recommendations