Neurosurgical Review

, Volume 26, Issue 2, pp 73–99 | Cite as

Computer-aided navigation in neurosurgery

  • P. Grunert
  • K. Darabi
  • J. Espinosa
  • R. Filippi


The article comprises three main parts: a historical review on navigation, the mathematical basics for calculation and the clinical applications of navigation devices. Main historical steps are described from the first idea till the realisation of the frame-based and frameless navigation devices including robots. In particular the idea of robots can be traced back to the Iliad of Homer, the first testimony of European literature over 2500 years ago. In the second part the mathematical calculation of the mapping between the navigation and the image space is demonstrated, including different registration modalities and error estimations. The error of the navigation has to be divided into the technical error of the device calculating its own position in space, the registration error due to inaccuracies in the calculation of the transformation matrix between the navigation and the image space, and the application error caused additionally by anatomical shift of the brain structures during operation. In the third part the main clinical fields of application in modern neurosurgery are demonstrated, such as localisation of small intracranial lesions, skull-base surgery, intracerebral biopsies, intracranial endoscopy, functional neurosurgery and spinal navigation. At the end of the article some possible objections to navigation-aided surgery are discussed.


History Mathematical basics Error estimation Navigation Digital localisation Clinical application 


  1. 1.
    Adams L, Krybus W, Meyer-Ebrecht D, Rüger R, Gilsbach JM, Mösges R, Schlöndorff G (1990) Computer assisted surgery. IEEE Computer Graphics Appl 10:43CrossRefGoogle Scholar
  2. 2.
    Albert TJ, Klein GR, Vaccaro AR (1999) Image-guided anterior cervical corpectomy. A feasible study. Spine 15:826–830CrossRefGoogle Scholar
  3. 3.
    Alberti O, Dorward NL, Kitchen ND, Thomas DGT (1997) Neuronavigation—impact on operating time. Stereotact Funct Neurosurg 68:44–48PubMedGoogle Scholar
  4. 4.
    Alexander E III, Moriarty TM, Kikinis R, Black P, Jolesz FM (1997) The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg 68:10–17PubMedGoogle Scholar
  5. 5.
    Altuchow NW (1891) Encephalometric investigation of brain in connection with sex, age and cranium size. Publisher unknown, MoscowGoogle Scholar
  6. 6.
    Apuzzo ML, Chen JC (1999) Stereotaxy, navigation and the temporal concatenation. Stereotact Funct Neurosurg 72:82–88PubMedGoogle Scholar
  7. 7.
    Apuzzo Ml, Sabshin JK (1983) Computed tomographic guidance stereotaxis in the management of the intracranial mass lesions. Neurosurgery 12:277–284PubMedGoogle Scholar
  8. 8.
    Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Intraoperative localization using an armless, frameless stereotactic wand. J Neurosurg 78:510–514PubMedGoogle Scholar
  9. 9.
    Barnett GH, Miller DW (1998) Brain biopsy and related procedures. In: Roberts DW, Barnett GH, Maciunas RJ (eds) Image-guided neurosurgery. Quality Medical, St. Louis, pp 181–191Google Scholar
  10. 10.
    Barnett GH (1996) Surgical management of convexity and falcine meningeomas using interactive image-guided surgery systems. Neurosurg Clin N Am 7:279–284PubMedGoogle Scholar
  11. 11.
    Barnett GH, Steiner CP, Roberts DW (1998) Surgical navigation system technologies. In: Roberts DW, Barnett GH, Maciunas RJ (eds) Image-guided neurosurgery. Quality Medical, St. Louis, pp 17–32Google Scholar
  12. 12.
    Belliveau JW, Kennedy DN, McKinstry RC (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719PubMedGoogle Scholar
  13. 13.
    Benabid A, Lavallee S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1992) Computer-driven robot for stereotactic neurosurgery. Computers in stereotactic surgery. Blackwell Scientific, Boston, pp 330–342Google Scholar
  14. 14.
    Bingaman WE, Barnett GH (1998) Social and economic impact of surgical navigation systems. In: Roberts DW, Barnett GH, Maciunas RJ (eds) Image-guided surgery. Quality Medical, St. Louis, pp 231–249Google Scholar
  15. 15.
    Boecher-Schwarz HG, Grunert P, Guenthner M, Kessel G, Mueller-Forell W (1996) Stereotactically guided cavernous malformation surgery. Minim Invas Neurosurg 39:50–55Google Scholar
  16. 16.
    Bolger C, Wigfield C, Melkent T, Smith K (1999) Frameless stereotaxy and anterior cervical surgery. Comput Aided Surg 4:322–327PubMedGoogle Scholar
  17. 17.
    Bolger C, Wigfield C (2000) Image-guided surgery: applications to the cervical and thoracic spine and review of the first 120 procedures. J Neurosurg 92:175–180PubMedGoogle Scholar
  18. 18.
    Boroojerdi B, Folys H, Krings T, Spetzger U, Thron A, Topper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110:699–704PubMedGoogle Scholar
  19. 19.
    Brinker T, Arango G, Kaminsky S, Samii A, Thorns U, Vorkapic P, Samii M (1998) An experimental approach to image guided skull base surgery employing a microscope based neuronavigation system. Acta Neurochir (Wien) 140:883–889Google Scholar
  20. 20.
    Brommeland T, Henning R (2000) A new procedure for frameless computer navigated stereotaxy. Acta Neurochir (Wien) 142:443–447Google Scholar
  21. 21.
    Bucholz R, Marzouk S, Levy A (1999) Image guidance and the operating microscope: stealth and neural navigation. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 345–355Google Scholar
  22. 22.
    Bucholz R, Macneil WR, Henderson J (1997) Anatomical surface contour matching for efficient registration in image guided neurosurgery. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 772–777Google Scholar
  23. 23.
    Capek K (1931) Rossum's universal robots [Czech]. Aventinum Praha X. VydaniGoogle Scholar
  24. 24.
    Carl AL, Khanuja HS, Sachs BL, Gatto CA, vom Lehm S, Vosburg K, Schenck J (1997) In vitro simulation. Early results of stereotaxy for pedicle screw placement. Spine 22:1160–1164PubMedGoogle Scholar
  25. 25.
    Carl AL, Khanuja HS, Gatto CA, Matsumoto M, vom Lehm J, Schenck J, Rohling K, Lorensen W, Vosburg K (2000) In vivo pedicle screw placement: image-guided virtual vision. J Spinal Disord 13:225–229PubMedGoogle Scholar
  26. 26.
    Carrau RL, Snyderman CH, Curin HD, Janecka IP, Stechison M, Weissman JL (1996) Computer-assisted intraoperative navigation during skull base surgery. Am J Otolaryng 17:95–101Google Scholar
  27. 27.
    Clarke R (1906) On a method of investigating the deep ganglia and tracts of the central nervous system. Br Med J 2:1799–1800Google Scholar
  28. 28.
    Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722–2727Google Scholar
  29. 29.
    Cormack AM (1964) Representation of a function by its line integrals with some radiological applications II. J Appl Phys 35:195–207Google Scholar
  30. 30.
    Coste E, Rousseau J, Gibon D, Deleume JF, Blond S, Marchandise X (1993) Frameless method of stereotactic localization with DSA. Neuroradiology 189:829–834Google Scholar
  31. 31.
    Cosgrove GR, Buchbinder BR, Jiang H (1999) Functional magnetic resonance imaging for planning cortical resections. Thieme, New York, pp 201–207Google Scholar
  32. 32.
    Cushing H (1909) A note on the faradic stimulation of the postcentral gyrus in conscious patients. Brain 32:44–53Google Scholar
  33. 33.
    Dandy WE (1918) Ventriculography following the injection of air into the cerebral ventricles. Ann Surg 68:5–12Google Scholar
  34. 34.
    Darabi K, Grunert P, Perneczky A (1997) Accuracy of intraoperative navigation using skin markers. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 920–924Google Scholar
  35. 35.
    David NE (1999) Ergebnisse der rahmenbasierten und rahmenlosen intraoperativen Lokalisation von Gehirnprozessen unter besonderer Berücksichtigung des klinischen Outcomes. Inaugural Dissertation, MainzGoogle Scholar
  36. 36.
    Dean D, Kamath J, Duerk JL, Ganz E (1998) Validation of object-induced MR distortion correction for frameless stereotactic neurosurgery. IEEE Trans Med Imaging 17:810–816CrossRefPubMedGoogle Scholar
  37. 37.
    Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. ASME J Appl Mechanics 22:215–221Google Scholar
  38. 38.
    Descartes R (1984) Passions de l'âme. Meiner, HamburgGoogle Scholar
  39. 39.
    Dorward NL, Alberti O, Zhao J, Dijkstra A, Buurman J, Palmer JD, Hawkes D, Thomas DGT (1998) Interactive image-guided neuroendoscopy: development and early clinical experience. Minim Invasive Neurosurg 41:31–34PubMedGoogle Scholar
  40. 40.
    Dorward NL, Alberti O, Velani B, Gertsen FA, Harkness WF, Kitchen ND, Thomas DGT (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88:656–662PubMedGoogle Scholar
  41. 41.
    Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DGT (1999) Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg 90:160–168Google Scholar
  42. 42.
    Doshi PK, Lemmieux L, Fish DR, Shorvon SD, Harkness WH, Thomas DGT (1995) Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand. Acta Neurochir Suppl (Wien) 64:49–53Google Scholar
  43. 43.
    Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29:27–33PubMedGoogle Scholar
  44. 44.
    Drake JM, Rutka JT, Hoffmann HJ (1994) ISG viewing wand. Neurosurgery 34:1094–1097Google Scholar
  45. 45.
    Drake JM, Prudencio J, Holowaka S, Rutka JT, Hoffmann HJ, Humphrey RP (1994) Frameless stereotaxy in children. Pediatr Neurosurg 20:152–159PubMedGoogle Scholar
  46. 46.
    Duffau H (2000) Intraoperative direct subcortical stimulation for identification of the internal capsule, combined with an image-guided stereotactic system during surgery for basal ganglia lesions. Surg Neurol 53:250–254PubMedGoogle Scholar
  47. 47.
    Dyer PV, Patel N, Pell GM, Cumminis B, Sandeman DR (1995) The ISG viewing wand: an application to atlanto-axial cervical surgery using the Le Fort I maxillary osteotomy. Br J Oral Maxillofac Surg 33:370–374PubMedGoogle Scholar
  48. 48.
    Ebeling U, Hasdemir MG, Barth A (1993) Stereotaktisch geleitete Mikrochirurgie zerebraler Prozesse. Schweiz Med Wochenschr 123:1585–1590PubMedGoogle Scholar
  49. 49.
    Ebeling U, Steinmetz H, Huang Y, Kahn T (1989) Topography and identification of the inferior precentral sulcus in MR image. AJNR 10:937–942Google Scholar
  50. 50.
    Elias WJ, Chadduck JB, Alden TD, Laws ER Jr (1999) Frameless stereotaxy for transsphenoidal surgery. Neurosurgery 45:271–275PubMedGoogle Scholar
  51. 51.
    Ende G, Treuer H, Boesecke R (1992) Optimization and evaluation of landmark-based image correlation. Phys Med Biol 37:261–271CrossRefPubMedGoogle Scholar
  52. 52.
    El Jamel MS (1997) Accuracy, efficacy, and clinical applications of the radionics operating arm system. Comput Aid Surg 2:292–297CrossRefGoogle Scholar
  53. 53.
    Ettinger GJ, Grimson WEL, Leventon ME (1996) Noninvasive functional brain mapping using registered transcranial magnetic stimulation. Proceedings of the IEEE workshop on mathematical methods in biomedical image analysis, San Francisco, pp 21–22Google Scholar
  54. 54.
    Fleig OJ, Edwards PJ, Chandra S, Süttler H, Hawkes DJ (1998) Automated microscope calibration for image guided surgery. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR 98. Elsevier, Amsterdam, pp 747–752Google Scholar
  55. 55.
    Forstad H, Hariz M, Ljunggren B (1991) History of Clare's stereotactic instrument. Stereotact Funct Neurosurg 57:130–140PubMedGoogle Scholar
  56. 56.
    Fankhauser H, Glauser D, Flury P, Piguet Y, Epitaux M, Favre J, Meuli RA (1994) Robot for CT-guided stereotactic neurosurgery. Stereotact Funct Neurosurg 63:93–98PubMedGoogle Scholar
  57. 57.
    Fries G, Perneczky A (1999) Intracranial endoscopy. In: Cohadon F (ed) Advances and technical standards in neurosurgery, vol 25. Springer, Vienna, pp 21–60Google Scholar
  58. 58.
    Friets EM, Strobehn JW, Hatch JF, Roberts DW (1989) A frameless stereotactic operating microscope for neurosurgery. IEEE Trans Biomed Eng 36:608–617CrossRefPubMedGoogle Scholar
  59. 59.
    Gallen CC, Tecoma E, Iragui V, Sobel DF, Schwartz BJ, Bloom FE (1997) Magnetic source imaging of abnormal low frequency magnetic activity in presurgical evaluation of epilepsy. Epilepsia 38:452–460PubMedGoogle Scholar
  60. 60.
    Gallen CC, Schwartz BJ, Bucholz RD, Malik G, Barkley GL, Smith J, Tung H, Copeland B, Bruno L, Assam S, Hirschkoff E, Bloom F (1995) Presurgical localization of functional cortex using magnetic source imaging. J Neurosurg 82:988–994PubMedGoogle Scholar
  61. 61.
    Galloway RL, Maciunas RJ, Edwards CA (1992) Interactive image-guided neurosurgery. IEEE Trans Biomed Eng 39:1226–1231CrossRefPubMedGoogle Scholar
  62. 62.
    Germano IM, Queenan JV (1998) Clinical experience with intracranial needle biopsy using frameless surgical navigation. Comput Aided Surg 3:33–39CrossRefPubMedGoogle Scholar
  63. 63.
    Germano IM, Villalobos H, Silvers A, Post KD (1999) Clinical use of the optical digitizer for intracranial neuronavigation. Neurosurgery 45:261–269PubMedGoogle Scholar
  64. 64.
    Gildenberg PL (1997) The history of stereotactic and functional neurosurgery. In: Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1–15Google Scholar
  65. 65.
    Giorgi C, Eisenberg H, Costi G, Gallo E, Garibotto G, Casolino D (1995) A robot assisted microscope for neurosurgery. Proceedings of MRCAS, pp 334–339Google Scholar
  66. 66.
    Giorgi C, Casolino DS (1997) Preliminary clinical experience with intraoperative stereotactic ultrasound imaging. Stereotact Funct Neurosurg 68:54–58PubMedGoogle Scholar
  67. 67.
    Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A (1995) Neurosurgical robot minerva: first results and current developments. J Image Guid Surg 1:266–272CrossRefPubMedGoogle Scholar
  68. 68.
    Glossop N, Hu R (1997) Effect of registration method on clinical accuracy of image guided pedicle screw surgery. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 884–888Google Scholar
  69. 69.
    Glossop N, Hu R (1997) Clinical use accuracy in image guided surgery. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 889–893Google Scholar
  70. 70.
    Goertz RC (1963) Manipulators used for handling radioactive materials. In: Benett EM (ed) Human factors in technology. McGraw-Hill, New YorkGoogle Scholar
  71. 71.
    Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF (1996) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83:287–292Google Scholar
  72. 72.
    Grimson WEL, Ettinger GJ, White SJ, Lozano-Perez T, Wells WM III, Kikinis R (1996) An automatic registration method for frameless stereotaxy, image guided surgery and enhanced reality visualization. IEEE Trans Med Imaging 5:129–140CrossRefGoogle Scholar
  73. 73.
    Grunert P, Hopf N, Perneczky A (1997) Framebased and frameless endoscopic procedures in the third ventricle. Stereotact Funct Neurosurg 68:80–89PubMedGoogle Scholar
  74. 74.
    Grunert P, Mueller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aid Surg 3:166–173Google Scholar
  75. 75.
    Grunert P, Mäurer J, Müller-Forell W (1999) Accuracy of stereotactic coordinate transformation using a localization frame and computed tomographic imaging. Part I. Influence of the mathematical and physical properties of the CT on the image of the rods of the localization frame and the determination of their centres. Neurosurg Rev 22:173–187PubMedGoogle Scholar
  76. 76.
    Grunert P (1999) Accuracy of stereotactic coordinate transformation using a localization frame and computed tomographic imaging. Part II. Analysis of matrix-based coordinate transformation. Neurosurg Rev 22:188–203PubMedGoogle Scholar
  77. 77.
    Grunert P, Perneczky A, Resch K (1994) Endoscopic procedures through the foramen of Monro under stereotactic conditions. Minim Invas Neurosurg 37:2–8Google Scholar
  78. 78.
    Gugino LD, Potts GF, Aglio LS, Alexander E III, Grimson WEL, Kikinis R, Shenton M, Black P, Ettinger GJ, Coste WA, Leventon M, Gonzalez AA (1999) Localization of eloquent cortex using transcranial magnetic stimulation. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 163–199Google Scholar
  79. 79.
    Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab vectorvision neuronavigation system: technology and clinical experience in 131 cases. Neurosurgery 44:97–104PubMedGoogle Scholar
  80. 80.
    Gunkel AR, Freysinger W, Hensler E, Auer T, Eichinger P, Auberger T, Bale RJ, Vogele M, Martin A, Thumfart WF, Lukas P (1997) Computer assisted stereotactic frameless interstitial brachytherapy. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 404–409Google Scholar
  81. 81.
    Guthrie BL (1994) Graphic-interactive cranial surgery: the operating arm system. In: Pell MF, Thomas DGT (eds) Handbook of stereotaxy using the CRW apparatus. Williams and Wilkins, Baltimore, pp 193–210Google Scholar
  82. 82.
    Guthrie BL, Adler JR (1992) Computer-assisted preoperative planning, interactive surgery and frameless stereotaxy. Clin Neurosurg 38:112–131PubMedGoogle Scholar
  83. 83.
    Guthrie BL (1998) Cerebral metastatic disease. In: Roberts DW, Barnet GH, Maciunas RJ (eds) Image guided neurosurgery. Quality Medical, St. Louis, pp 73–76Google Scholar
  84. 84.
    Haase J (1999) Image-guided neurosurgery/neuronavigation/the surgiscope. Reflections on a theme. Minim Invasive Neurosurg 42:53–59PubMedGoogle Scholar
  85. 85.
    Haase J (1999) Neuronavigation. Childs Nerv Syst 15:755–777PubMedGoogle Scholar
  86. 86.
    Hamadeh A, Lavallee S, Cinquin P (1998) Automated 3-dimensional computed tomographic and fluoroscopic image registration. Comput Aided Surg 3:11–19PubMedGoogle Scholar
  87. 87.
    Hamilton R, Sweeney P, Pelizzari C, Yetkin F, Holman B, Garada B, Weichselbaum R, Chen G (1997) Functional imaging in treatment planning of brain lesions. Int J Radiol Oncol Biol Phys 37:181–188Google Scholar
  88. 88.
    Hardenack M, Bucher N, Falk A, Harders A (1998) Preoperative and intraoperative navigation: status quo and perspectives. Comput Aided Surg 3:153–158PubMedGoogle Scholar
  89. 89.
    Hassfeld S, Zoller J, Albert FK, Wirtz CR, Knauth M, Muhling J (1998) Preoperative planning and intraoperative navigation in skullbase surgery. J Craniomaxillofac Surg 26:220–225PubMedGoogle Scholar
  90. 90.
    Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41:608–613PubMedGoogle Scholar
  91. 91.
    Hauser R, Westermann B, Probst R (1997) Non-invasive tracking of patients' head movements during computer-assisted intranasal microscopic surgery. Laryngoscope 107:491–499PubMedGoogle Scholar
  92. 92.
    Hauser R, Westermann B, Probst R (1997) A noninvasive patient registration and reference system for interactive intraoperative sinus surgery. Proc Inst Mech Eng 211:327–334Google Scholar
  93. 93.
    Heilbrun MP (1984) Computed tomography-guided stereotactic system. Clin Neurosurg 31:564–581Google Scholar
  94. 94.
    Heilbrun MP, McDonald P, Wiker C (1992) Stereotactic localization and guidance using a machine vision technique. Stereotact Funct Neurosurg 58:94–98PubMedGoogle Scholar
  95. 95.
    Helm PA, Eckel T (1998) Accuracy of registration methods in frameless stereotaxis. Comput Aided Surg 3:51–56CrossRefPubMedGoogle Scholar
  96. 96.
    Henderson JM, Smith KR, Bucholz RD (1994) An accurate and ergonomic method for registration for image-guided surgery. Comput Med Imaging Graph 18:273–277PubMedGoogle Scholar
  97. 97.
    Homer (1974) Iliad. Murray AT (ed) Harvard University Press, LondonGoogle Scholar
  98. 98.
    Homer (1974) Odyssey. Murray AT (ed) Harvard University Press, LondonGoogle Scholar
  99. 99.
    Hopf NJ, Grunert P, Darabi K, Busert C, Bettag M (1999) Frameless neuronavigation applied to endoscopic neurosurgery. Minim Invasive Neurosurg 42:187–193PubMedGoogle Scholar
  100. 100.
    Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–124Google Scholar
  101. 101.
    Horstmann GA, Reinhardt HF (1994) Ranging accuracy test of the sonic microstereotactic system. Neurosurgery 34:754–755PubMedGoogle Scholar
  102. 102.
    Hounsfield GN (1973) Computerized transaxial scanning (tomography). Part I: Description of a system. Br J Radiol 46:1016–1022PubMedGoogle Scholar
  103. 103.
    Hunnerup PB, Nielsen JB (1994) Real time navigation. System for neurosurgery. Master's thesis. Aalborg University, DenmarkGoogle Scholar
  104. 104.
    Kai J, Shiomi H, Sasama T, Sato Y, Inoue T, Tamura S (1998) An optical high-precision 3-D position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR 98. Elsevier, Amsterdam, pp 599–604Google Scholar
  105. 105.
    Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H (1991) A frameless, armless navigation system for computer-assisted neurosurgery. J Neurosurg 74:845–849PubMedGoogle Scholar
  106. 106.
    Kelly PJ (1999) Electromagnetic operative guidance: the regulus navigator. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 365–372Google Scholar
  107. 107.
    Kelly PJ, Kall B, Goerss S (1984) Transposition of volumetric information derived from CT scanning in stereotactic space. Surg Neurol 21:465–471PubMedGoogle Scholar
  108. 108.
    Kirschner M (1933) Die Punktionstechnik und die Elektrokoagulation des Ganglion Gasseri. Über gezielte Operationen. Arch Klin Chir 176:581–620Google Scholar
  109. 109.
    Kiya N, Dureca C, Fukushima T, Maroon JC (1997) Computer navigational microscope for minimally invasive neurosurgery. Minim Invasive Neurosurg 40:110–115PubMedGoogle Scholar
  110. 110.
    Knauth M, Wirtz CR, Tronnier VM, Staubert A, Kunze S, Sartor K (1998) Intraoperative magnetic resonance tomography for control of extent of neurosurgical operations. Radiologe 38:218–224CrossRefPubMedGoogle Scholar
  111. 111.
    Ko K (1998) Superimposed holographic image-guided neurosurgery. Technical note. J Neurosurg 88:777–781PubMedGoogle Scholar
  112. 112.
    Konen W, Scholz M, Tombrock S (1998) The VN project: endoscopic image processing for neurosurgery. Comput Aided Surg 3:144–148CrossRefPubMedGoogle Scholar
  113. 113.
    Kosugi Y, Watanabe E, Goto J (1988) An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng 35:147–152PubMedGoogle Scholar
  114. 114.
    Koivukangas J, Louhisalmi Y, Alakuijala J, et al (1993) Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79:36–42PubMedGoogle Scholar
  115. 115.
    Krings T, Reul J, Spetzger U, Klusmann A, Roessler F, Gilsbach JM, Thron A (1998) Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien) 140:215–222Google Scholar
  116. 116.
    Krombach GA, Spetzger U, Rohde V, Gilsbach JM (1998) Intraoperative localization of functional regions in the sensomotor cortex by neuronavigation and cortical mapping. Comput Aided Surg 3:64–73PubMedGoogle Scholar
  117. 117.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160CrossRefPubMedGoogle Scholar
  118. 118.
    Laborde G, Klimek L, Harders A, Gilsbach J (1993) Frameless stereotactic drainage of intracranial abscesses. Surg Neurol 40:16–21PubMedGoogle Scholar
  119. 119.
    Lavallee S (1996) Registration for computer-integrated surgery: methodology, state of the art. In: Taylor RH, Lavallee S, Burdea GC, Mösges R (eds) Computer-integrated surgery. MIT Press, Cambridge, pp 77–97Google Scholar
  120. 120.
    Lavallee S, Szelisky R, Brunie L (1996) Anatomy-based registration of three-dimensional medical images, range images, X-ray projections, and three-dimensional models using octree-splines. In: Taylor RH, Lavallee S, Burdea GC, Mösges R (eds) Computer-integrated surgery. MIT Press, Cambridge, pp 115–143Google Scholar
  121. 121.
    Lawton MT, Spetzler RF (1999) Clinical experience with a frameless stereotactic arm in intracranial neurosurgery. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 321–332Google Scholar
  122. 122.
    Leksell L (1949) A stereotactic apparatus for intracranial surgery. Acta Chir Scand 99:229–233Google Scholar
  123. 123.
    Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319Google Scholar
  124. 124.
    Lewis JT, Galloway RL Jr, Schreiner S (1998) An ultrasound approach to localization of fiducial markers for interactive, image-guided neurosurgery. Part I: Principles. IEEE Trans Biomed Eng 45:620–630CrossRefPubMedGoogle Scholar
  125. 125.
    Longerich UJ, Carls FR, Broennimann R, Sailer HF (1997) The accuracy of the virtual patient system for cranio-maxillofacial navigation. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 729–732Google Scholar
  126. 126.
    Luber J, Mackevics A (1995) Multiple coordinate manipulator (MKM). A computer assisted microscope. In: Lemke HU, Vannier MW (eds) CAR 95. Elsevier, Amsterdam pp 1121–1125Google Scholar
  127. 127.
    Maciunas RJ, Galloway RL, Fitzpatrick JR, Mandava VR, Edwards CA, Allen GS (1992) A universal system for interactive image-directed neurosurgery. Stereotact Funct Neurosurg 58:108–113PubMedGoogle Scholar
  128. 128.
    Maciunas RJ (1999) Overview of interactive image-guided neurosurgery: principles, applications, and new techniques. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 15–32Google Scholar
  129. 129.
    Maciunas RJ, Fitzpatrick JM, Gadamsetty S, Mauer CR Jr (1996) A universal method for geometric correction of magnetic resonance images for stereotactic neurosurgery. Stereotact Funct Neurosurg 66:137–140PubMedGoogle Scholar
  130. 130.
    Maciunas RJ, Berger MS, Copeland B, Mayberg MR, Selker R, Allen GS (1996) A technique for interactive image-guided neurosurgical intervention in primary brain tumors. Neurosurg Clin N Ann 7:245–266Google Scholar
  131. 131.
    Maciunas RJ, Galloway RL, Latimer JW (1994) The application accuracy of stereotactic frames. Neurosurgery 35:682–695PubMedGoogle Scholar
  132. 132.
    Maldijian J, Atlas SW, Howard RS II, Greenstein E, Alsop D, Detre JA, Liesterud J, D'Exposito M, Flamm ES (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84:477–483PubMedGoogle Scholar
  133. 133.
    Manwaring KH (1999) Neuronavigation using magnetic fields. Workshop on endoscopy and navigation. Greifswald (personal communication)Google Scholar
  134. 134.
    Masamune K, Ji L, Suzuki M, Dohi T, Iseki H, Takakura K (1998) A new development of stereotactic robot with detachable drive for neurosurgery. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR 98. Elsevier, Amsterdam, pp 664–669Google Scholar
  135. 135.
    Matula C, Roessler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3:174–182PubMedGoogle Scholar
  136. 136.
    Maurer CR, Maciunas RJ, Fitzpatrick JM (1998) Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 17:753–761PubMedGoogle Scholar
  137. 137.
    Maurer CR, Aboutanos GB, Dawant BM, Gadamsetty S, Margolin RA, Maciunas RJ (1996) Effect of geometrical distortion correction in MR on image registration accuracy. J Comput Assist Tomogr 20:666–679CrossRefPubMedGoogle Scholar
  138. 138.
    Maurer CR, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16:447–462CrossRefPubMedGoogle Scholar
  139. 139.
    Mauerer CR, Hill DL, Martin AJ, Liu H, McCue M, Rueckert D, Lloret D, Hall WA, Maxwell RC, Hawkes DJ, Truwit CL (1998) Investigation of intraoperative brain deformation using a 1.5 T interventional MR system. preliminary results. IEEE Trans Med Imaging 17:817–825CrossRefPubMedGoogle Scholar
  140. 140.
    McDermott MW (1998) Intracranial gliomas. In: Roberts DW, Barnett GH, Maciunas RJ (eds) Image-guided neurosurgery. Quality Medical, St. Louis, pp 77–86Google Scholar
  141. 141.
    Merloz P, Tonetti J, Cinquin P, Lavalles S, Troccaz J, Pitet L (1998) Chirurgie assistée par ordinateur: visage automatisé de pèdicules vertebreaux. Chirurgie 123:482–490PubMedGoogle Scholar
  142. 142.
    Miga MI, Paulsen KD, Lemery JM, Eisner SD, Hartov A, Kennedy FE, Roberts DW (1999) Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans Med Imaging 18:866–874CrossRefPubMedGoogle Scholar
  143. 143.
    Moniz E (1927) L'encephalographie arterielle, s'importance dans la localisation des tumeurs cerebrales. Rev Neurol 2:72–89Google Scholar
  144. 144.
    Mösges R, Schlöndorff G (1988) A new imaging method for intraoperative therapy control in skull base surgery. Neurosurg Rev 11:245–247PubMedGoogle Scholar
  145. 145.
    Mösges R, Lavallee S (1996) Multimodal information for computer-integrated surgery. In: Taylor RH, Lavallee S, Burdea GC, Mösges R (eds) Computer integrated surgery. MIT Press, Cambridge, pp 5–19Google Scholar
  146. 146.
    Muacevic A, Steiger HJ (1999) Computer-assisted resection of cerebral arteriovenous malformations. Neurosurgery 45:1164–1170PubMedGoogle Scholar
  147. 147.
    Muacevic A, Muller A (1999) Image-guided endoscopic ventriculostomy with a new frameless armless neuronavigation system. Comput Aided Surg 4:87–92PubMedGoogle Scholar
  148. 148.
    Nabavi A, Manthei G, Blömer U, Kumpf L, Klinge H, Mehdorn HM (1995) Neuronavigation. Computerunterstütztes Operieren in der Neurochirurgie. Radiologe 35:573–577PubMedGoogle Scholar
  149. 149.
    Nolte LP, Visarius H, Arm E, Langlotz F, Schwarzenbach O, Zamorano L (1995) Computer aided fixation of spinal implants. J Image Guided Surg 1:88–93CrossRefGoogle Scholar
  150. 150.
    Nguyen JP, Lefaucher JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, Brugieres P, Pollin B, Feve A, Rostaing S, Cesaro P, Keravel Y (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlation between clinical, electrophysiological and anatomical data. Pain 82:245–251CrossRefPubMedGoogle Scholar
  151. 151.
    Paleologos TS, Wadley JP, Kitchen ND, Thomas DG (2000) Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningeoma surgery. Neurosurgery 47:40–47PubMedGoogle Scholar
  152. 152.
    Pelizzari CA, Chen GTY (1987) Registration of multiple diagnostic image scans using surface fitting. In: The use of computers in radiation therapy. Elsevier, Amsterdam, pp 437–440Google Scholar
  153. 153.
    Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton University Press, PrincetonGoogle Scholar
  154. 154.
    Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443Google Scholar
  155. 155.
    Perneczky A, Fries G (1998) Endoscope-assisted brain surgery. Part I. Evolution, basic concept, and current technique. Neurosurgery 42:219–225PubMedGoogle Scholar
  156. 156.
    Perneczky A, Tschabitscher M, Resch KDM (1993) Endoscopic anatomy for neurosurgery. Thieme, StuttgartGoogle Scholar
  157. 157.
    Perneczky A, Müller-Forell W, van Lindert E (1998) Key hole concept in neurosurgery with endoscope-assisted microsurgery. Twenty-five case studies. Thieme, StuttgartGoogle Scholar
  158. 158.
    Pieper DL (1968) The kinematics of manipulators under computer control. Standford artificial intelligence laboratory, Standford University AIM 72Google Scholar
  159. 159.
    Ogawa S, Tank DW, Menon R (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955PubMedGoogle Scholar
  160. 160.
    Ojeman G, Ojeman J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. J Neurosurg 71:316–326PubMedGoogle Scholar
  161. 161.
    Olivier A, Germano IM, Cukiert A, Peters T (1994) frameless stereotaxy for surgery of the epilepsies: preliminary experience. J Neurosurg 81:629–633PubMedGoogle Scholar
  162. 162.
    Olivier A, Cyr M, Comeau R, Peters T, Boling W, Klein D, Reutens D (1999) Image guided surgery of epilepsy and intrinsic brain tumors. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 469–482Google Scholar
  163. 163.
    Ostertag CB, Warnke PC (1999) Neuronavigation. Computerassistierte Neurochirurgie. Nervenarzt 70:517–521CrossRefPubMedGoogle Scholar
  164. 164.
    Radon J (1917) Über die Bestimmung von Functionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsischer Akademie der Wissenschaften. Leipzig Math-Phys Kl 69:262–277Google Scholar
  165. 165.
    Reinges MH, Spetzger U, Rohde V, Adams L, Gilsbach JM (1998) Experience with a new multifunctional articulated instrument holder in minimally invasive navigated surgery. Minim Invas Neurosurg 41:149–151Google Scholar
  166. 166.
    Reinhardt HF, Meyer H, Amrein E (1988) A computer-assisted device for intraoperative CT-correlated localization of brain tumors. Eur Surg Res 20:51–58PubMedGoogle Scholar
  167. 167.
    Reinhardt HF, Horstmann GA, Gratzl O (1993) Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations. Neurosurgery 32:51–57PubMedGoogle Scholar
  168. 168.
    Reinhardt HF, Trippl M, Westermann B, Horstmann GA, Gratzl O (1996) Computer assisted brain surgery for small lesions in the central sensorimotor region. Acta Neurochir (Wien) 138:200–205Google Scholar
  169. 169.
    Rhoten RL, Luciano MG, Barnett GH (1997) Computer-assisted endoscopy for neurosurgical procedures: technical note. Neurosurgery 40:632–637PubMedGoogle Scholar
  170. 170.
    Riechert T, Wolff M (1952) Ein neues Zielgerät für die Koagulation des Ganglion Gasseri und andere intracerebrale Eingriffe. Acta Neurochir 2:405–407Google Scholar
  171. 171.
    Roberts LG (1963) Machine perception of three-dimensional Solids. Lincoln Laboratory, Massachusetts Institute of Technology report no. 315Google Scholar
  172. 172.
    Roberts LG (1965) Homogenous matrix representation and manipulation of N-dimensional constructs. Lincoln Laboratory, Massachusetts Institute of Technology document no. MS1045Google Scholar
  173. 173.
    Roberts DW (1999) Stereotactic guidance with the operating microscope: surgiscope. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 333–343Google Scholar
  174. 174.
    Roberts DW, Miga MI, Hartov A, Eisner S, Lemery JM, Kennedy FE, Paulsen KD (1999) Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45:1199–1206PubMedGoogle Scholar
  175. 175.
    Roessler K, Ungersboeck K, Dietrich W, Aichholzer M, Hittmeir K, Matula C, Czech T, Koos WT (1997) Frameless stereotactic guided neurosurgery: clinical experience with an infrared based pointer device navigation system. Acta Neurochir (Wien) 139:551–559Google Scholar
  176. 176.
    Roessler K, Ungersboeck K, Czech T, Aichholzer M, Dietrich W, Goerzer H, Matula C, Koos WT (1997) Contour-guided brain tumor surgery using a stereotactic navigation microscope. Stereotact Funct Neurosurg 68:33–38PubMedGoogle Scholar
  177. 177.
    Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Czech T, Heimberger K, Matula C, Koos WT (1998) Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases. Minim Invasive Neurosurg 41:53–57PubMedGoogle Scholar
  178. 178.
    Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Goerzer H, Matula C, Czech T, Koos WT (1998) Frameless stereotactic lesion contour-guided surgery using a computer-navigated microscope. Surg Neurol 49:282–288PubMedGoogle Scholar
  179. 179.
    Roessler K, Czech T, Dietrich W, Ungersboeck K, Nasel C, Hainfellner JA, Koos WT (1998) Frameless stereotactic-directed tissue sampling during surgery of suspected low-grade gliomas to avoid histological undergrading. Minim Invasive Neurosurg 41:183–186PubMedGoogle Scholar
  180. 180.
    Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43:749–760PubMedGoogle Scholar
  181. 181.
    Roberts DW, Nakayama T, Brodwater BK; Pavlidis J, Friets EM, Fagan E, Hartov A, Strohbehn JW (1992) Further development and clinical application of the stereotactic operating microscope. Stereotact Funct Neurosurg 58:114–117PubMedGoogle Scholar
  182. 182.
    Roberts DW (1998) Fundamentals of registration. In: Roberts DW, Barnett GH, Maciunas RJ (eds) Image-guided neurosurgery. Quality Medical, St. Louis, pp 1–15Google Scholar
  183. 183.
    Rohde V, Reinges MH, Krombach GA, Gilsbach JM (1998) The combined use of image-guided frameless stereotaxy and neuroendoscopy for the surgical management of occlusive hydrocephalus and intracranial cysts. Br J Neurosurg 12:531–538PubMedGoogle Scholar
  184. 184.
    Rohde V, Rohde I, Reinges MH, Mayfrank L, Gilsbach JM (2000) Frameless stereotactically guided catheter placement and fibrinolytic therapy for spontaneous intracerebral hematomas: technical aspects and initial clinical results. Minim Invasive Neurosurg 43:9–17CrossRefPubMedGoogle Scholar
  185. 185.
    Rosenberg J (1972) A history of numerical control 1949–1972. The technical development, transfer to industry, and assimilation. Report no. ISI-RR-72–3. USC Information Sciences Institute, Marina del ReyGoogle Scholar
  186. 186.
    Rousseau J, Gibon D, Coste E, Blond S, Pertuzon B, Coche B, Vasseur C, Marchandise X (1995) A frameless stereotactic localization system using MRI, CT, and DSA. Acta Neurochir Suppl (Wien) 64:40–44Google Scholar
  187. 187.
    Roux FE, Ranjeva JP, Boulanouar K, Manelfe C, Sabatier J, Tremoulet M, Berry I (1997) Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotactic Funct Neurosurg 68:106–111Google Scholar
  188. 188.
    Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, Macdonald RL, Dohrmann GJ (1996) Frameless stereotaxy with real time tracking of patient's head movement and retrospective patient-image registration. J Neurosurg 85:287–292PubMedGoogle Scholar
  189. 189.
    Samii M, Carvalho GA, Tatagiba M, Matthies C, Vorkapic P (1996) Meningeomas of the tentorial notch: surgical anatomy and management. J Neurosurg 84:375–381PubMedGoogle Scholar
  190. 190.
    Sandeman DR, Gill SS (1995) The impact of interactive image guided surgery: the Bristol experience with the ISG/Elekta viewing wand. Acta Neurochir Suppl 64:54–58Google Scholar
  191. 191.
    Sandeman D, Moufild A (1998) Interactive image-guided pituitary surgery. An experience of 101 procedures. Neurochirurgie 44:331–338PubMedGoogle Scholar
  192. 192.
    Scarabin JM, Jannin P, Schartz D, Morandi X. MEG and 3-D navigation in image guided neurosurgery. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam pp 767–771Google Scholar
  193. 193.
    Scheinmann VD (1969) Design of a computer manipulator. Standford artificial intelligence laboratory. Standford University, AIM 92Google Scholar
  194. 194.
    Schmerber S, Chen B, Lavallee S, Chirosel JP, Poyet A, Colomb M, Reyt E (1997) Markerless hybrid registration method for computer assisted endoscopic ENT surgery. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam pp 799–806Google Scholar
  195. 195.
    Schmieder K, Hardenack M, Harders A (1998) Neuronavigation in daily routine of a neurosurgical department. Comput Aided Surg 3:159–161CrossRefPubMedGoogle Scholar
  196. 196.
    Schleidt DT, Dobrzeniecky AB, Dirksen KL, Larsen P, Kreiborg S (1998) Volume imaging for maxillofacial applications: estimation and analysis of CT measurement errors. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR 98. Elsevier, Amsterdam, pp 773–779Google Scholar
  197. 197.
    Schlöndorff G, Meyer-Ebrecht D, Mösges R, Krybus W, Adams L (1987) CAS, computer assisted surgery. Arch Otorhinolaryng [Suppl] 2:45Google Scholar
  198. 198.
    Schreiner S, Galloway RL Jr, Lewis JT, Bass WA, Muratore DM (1998) An ultrasound approach to localization of fiducial markers for interactive image-guided neurosurgery. Part II: Implementation and automation. IEEE Trans Biomed Eng 45:631–641CrossRefPubMedGoogle Scholar
  199. 199.
    Schröder HW, Gaab MR (1999) Endoscopic aqueductoplasty: technique and results. Neurosurgery 45:508–515PubMedGoogle Scholar
  200. 200.
    Schul C, Wassermann H, Skopp GB, Marinov M, Wolfer J, Schuierer G, Joos U, Willich N (1998) Surgical management of intraosseous skull base tumors with aid of operating arm system. Comput Aided Surg 3:312–319CrossRefPubMedGoogle Scholar
  201. 201.
    Smith KP, Frank KJ, Bucholz RD (1994) The neurostation—a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery. Comput Med Imaging Graph 18:247–256PubMedGoogle Scholar
  202. 202.
    Schulder M, Maldjian JA, Liu WC, Mun IK, Carmel PW (1997) Functional MRI-guided surgery of intracranial tumors. Stereotact Funct Neurosurg 68:98–105PubMedGoogle Scholar
  203. 203.
    Schulder M, Fontana P, Lavenhar MA, Carmel PW (1999) The relationship of imaging techniques to the accuracy of frameless stereotaxy. Stereotact Funct Neurosurg 72:136–141CrossRefPubMedGoogle Scholar
  204. 204.
    Selesnick SH, Kacker A (1999) Image-guided surgical navigation in otology and neurotology. Am J Otol 20:688–693PubMedGoogle Scholar
  205. 205.
    Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H (1996) In vivo accuracy testing and clinical experience with the ISG viewing wand. Neurosurgery 39:194–202PubMedGoogle Scholar
  206. 206.
    Spetzger U, Laborde G, Gilsbach JM (1995) Frameless neuronavigation in modern neurosurgery. Minim Invas Neurosurg 38:163–166Google Scholar
  207. 207.
    Spiegel EA, Wycis HT, Marks M, Lee AJ (1947) Stereotactic apparatus for operations on the human brain. Science 106:349–350Google Scholar
  208. 208.
    Spiegel EA, Wycis HT (1952) Stereoencephalotomy. Methods and stereotactic atlas of human brain. Grune and Stratton, New YorkGoogle Scholar
  209. 209.
    Talairach J, Hecaen H, David M, Monnier M, De Ajuriaguerra J (1949) Recherches sur la coagulation therapeutique des structures sous-corticales chez l'homme. Rev Neurol 81:4–24Google Scholar
  210. 210.
    Tanaka T, Olivier A, Hashizume K, Hodozuka A, Nakai H (1999) Image-guided epilepsy surgery. Neurol Med Chir (Tokyo) 39:895–900Google Scholar
  211. 211.
    Taren J, Ross D, Lu Y, Harmon L (1995) 3D laser scanning for image guided stereotactic neurosurgery. Acta Neurochir Suppl (Wien) 64:45–48Google Scholar
  212. 212.
    Tebo SA, Leopold DA, Long DM (1996) An optical digitizer for frameless stereotactic surgery. IEEE Comput Graph Applicat 16:55–64CrossRefGoogle Scholar
  213. 213.
    Thomas DGT, Doward NL, Kingsley D, Kitchen ND, Palmer JD, Alberti O, Velani B, Hawkes D, Zhao J, Dijkstra A, Gieles P, Buurman J, Gerritsen FA (1997) Clinical experience with the easy guide neuronavigation system. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 757–760Google Scholar
  214. 214.
    Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–902PubMedGoogle Scholar
  215. 215.
    Uematsu S, Lesser R, Fisher RS, Gordon B, Hara K, Kraus GL, Vining EP, Webber RW (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31:59–72PubMedGoogle Scholar
  216. 216.
    Ungersboeck K, Aichholzer M, Günthner M, Rössler K, Görzer H, Koos WT (1997) Cavernous malformations: from frame-based to frameless stereotactic localization. Minim Invasive Neurosurg 40:134–138PubMedGoogle Scholar
  217. 217.
    van Herk M, Kooy HM (1994) Automatic three dimensional correlation of CT-CT, CT-MRI, CT-SPECT using chamfer matching. Med Phys 21:1163–1178PubMedGoogle Scholar
  218. 218.
    Vannier MW, Haller JW (1999) Navigation in diagnosis and therapy. Eur J Radiol 31:132–140CrossRefPubMedGoogle Scholar
  219. 219.
    van Roost D, Schaller C, Meyer B, Schramm J (1997) Can neuronavigation contribute to standardization of selective amygdalohippocampectomy? Stereotact Funct Neurosurg 69:239–242Google Scholar
  220. 220.
    Villalobos H, Germano IM (1999) Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg 4:45–49CrossRefPubMedGoogle Scholar
  221. 221.
    Vrionis FD, Foley KT, Robertson JH, Shea JJ (1997) Use of cranial surface anatomic fiducials for interactive image-guided navigation in the temporal bone: a cadaveric study. Neurosurgery 40:755–763PubMedGoogle Scholar
  222. 222.
    Wadley JP, Dorward NL, Breeuwer M, Gerritsen FA, Kitchen ND, Thomas DGT (1998) Neuronavigation in 210 cases: further development of applications and full integration into contemporary neurosurgical practice. In: Lemke HU, Vannier MW, Inamura K, Farman A (eds) CAR 98. Elsevier, Amsterdam, pp 635–640Google Scholar
  223. 223.
    Wadley J, Kitchen N, Thomas D (1999) Image-guided neurosurgery. Hosp Med 60:34–38PubMedGoogle Scholar
  224. 224.
    Wadley J, Dorward N, Kitchen N, Thomas D (1999) Preoperative and intraoperative guidance in modern neurosurgery: a review of 300 cases. Ann R Coll Surg Engl 81:217–225Google Scholar
  225. 225.
    Wagner W, Tschiltschke W, Niendorf WR, Schroeder HWS, Gaab MR (1997) Infrared-based neuronavigation and cortical motor stimulation in the management of central-region tumours. Stereotact Funct Neurosurg 68:112–116PubMedGoogle Scholar
  226. 226.
    Wagner W, Gaab MR, Schroeder HW, Sehl U, Tschiltschke W (1999) Experiences with cranial neuronavigation in pediatric neurosurgery. Pediatr Neurosurg 31:231–236PubMedGoogle Scholar
  227. 227.
    Warnick R (1997) The cost-effectiveness of image-guided craniotomy for metastatic brain tumors workshop. November 8–10, Mainz (personal communication)Google Scholar
  228. 228.
    Wells TH, Cosman ER, Ball RE (1987) The Brown-Roberts-Wells (BRW) arc: its concept as a spatial navigation system. Appl Neurophysiol 50:127–132PubMedGoogle Scholar
  229. 229.
    Wang MY, Maurer CR Jr, Fitzpatrick JM, Maciunas RJ (1996) An automatic technique for finding and localizing externally attached markers in CT and MR volume images of the head. IEEE Trans Biomed Eng 43:627–637CrossRefPubMedGoogle Scholar
  230. 230.
    Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotactic surgery. Surg Neurol 27:543–547PubMedGoogle Scholar
  231. 231.
    Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28:792–800PubMedGoogle Scholar
  232. 232.
    Westermann B, Hauser R (1997) Precise tracking of an operating microscope for intranasal image guided surgery: improved accuracy with a laser-supported method. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 878–883Google Scholar
  233. 233.
    Westermann B, Hauser R (1996) Non-invasive 3D patient registration for image-guided skull base surgery. Comput Graph 20:793–799CrossRefGoogle Scholar
  234. 234.
    Westermann B, Trippel M, Reinhardt H (1995) Optically navigable operating microscope for image-guided surgery. Minim Invas Neurosurg 38:112–116Google Scholar
  235. 235.
    Wichmann MW (1967) The use of optical feedback in computer control of an arm. Standford Artificial Intelligence Laboratory, Standford University, AIM 56Google Scholar
  236. 236.
    Wirtz CR, Tronnier VM, Bonsanto MM, Knauth M, Staubert A, Kunze S (1997) Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68:39–43PubMedGoogle Scholar
  237. 237.
    Wirtz CR, Tronnier VM, Bonsanto MM, Hassfeld S, Knauth M, Kunze S (1998) Neuronavigation. Methods and prospects. Nervenarzt 69:1029–1036CrossRefPubMedGoogle Scholar
  238. 238.
    Wirtz CR, Knauth M, Hassfeld S, Tronnier VM, Albert FK, Bonsanto MM, Kunze S (1998) Neuronavigation. First experiences with three different commercially available systems. Zentralbl Neurochir 59:14–22PubMedGoogle Scholar
  239. 239.
    Wolf M, Heissler E, Wust P, Beier J, Stahl H, Felix R, Bier J (1997) Test of navigation systems for image-guided implantation of catheters. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 909–913Google Scholar
  240. 240.
    Wurm G, Wies W, Schnizer M, Trenkler J, Holl K (2000) Advanced surgical approach for selective amygdalohippocampectomy through neuronavigation. Neurosurgery 46:1377–1382PubMedGoogle Scholar
  241. 241.
    Yasargil MG (1984) Microneurosurgery, vol 1. Thieme, StuttgartGoogle Scholar
  242. 242.
    Yasargil MG (1984) Microneurosurgery, vol 2. Thieme, StuttgartGoogle Scholar
  243. 243.
    Yasargil MG (1987) Microneurosurgery, vol 3A. Thieme, StuttgartGoogle Scholar
  244. 244.
    Yasargil MG (1988) Microneurosurgery, vol 3B. Thieme, StuttgartGoogle Scholar
  245. 245.
    Yasargil MG (1994) Microneurosurgery, vol 4A. Thieme, StuttgartGoogle Scholar
  246. 246.
    Yasargil MG (1996) Microneurosurgery, vol 4B. Thieme, StuttgartGoogle Scholar
  247. 247.
    Young RF (1987) Application of robotics to stereotactic neurosurgery. Neurol Res 9:123–128PubMedGoogle Scholar
  248. 248.
    Zamorano L, Nolte LP, Kadi AM (1993) Interactive intraoperative localization using infrared-based system. Neurol Res 15:290–298PubMedGoogle Scholar
  249. 249.
    Zamorano L, Jiang C, Chavantes C, Diaz FG (1999) Stereotactic and interactive image-guided neuroendoscopy. In: Alexander E III, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 311–320Google Scholar
  250. 250.
    Zeilenhofer HF, Krol Z, Sader R, Hoffmann KH, Hogg M, Schwaiger M, Gerhardt P, Horch HH (1997) Multimodal images in diagnostics of head and neck area using efficient registration and visualization methods. In: Lemke HU, Vannier MW, Inamura K (eds) CAR 97. Elsevier, Amsterdam, pp 723–728Google Scholar
  251. 251.
    Zernov DN (1890) L'encephalometrie. Rev Gen Clin Ther 19:302Google Scholar
  252. 252.
    Zinreich SJ, Tebo SA, Long DM, Brem H, Mattox DE, Loury ME, Van der Kolk CA, Koch WM, Kennedy DW, Bryan RN (1993) Frameless stereotactic integration of CT imaging data: accuracy and initial applications. Radiology 188:735–742PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • P. Grunert
    • 1
  • K. Darabi
    • 1
  • J. Espinosa
    • 1
  • R. Filippi
    • 1
  1. 1.Department of NeurosurgeryJohannes Gutenberg UniversityMainzGermany

Personalised recommendations