Advertisement

Investigation into the miRNA/5' isomiRNAs function and drought-mediated miRNA processing in rice

  • Sonia Balyan
  • Shaji V. Joseph
  • Rashmi Jain
  • Roseeta Devi Mutum
  • Saurabh RaghuvanshiEmail author
Original Article
  • 61 Downloads

Abstract

MicroRNAs lie at the core of biological regulatory networks in plants. The recent discovery of isomiRs that are length variants of the annotated mature miRNAs has further unveiled the complexity of miRNome. Delineation of their functional relevance is critical to understand the complete functional spectrum of the miRNome. To apprehend the role of 5′ isomiRs in rice, we performed a comprehensive analysis of the annotated miRNA pool using 8 deep-sequencing datasets from flag leaf and spikelet tissues from two cultivars of rice viz. N22 and PB1 grown under control and drought conditions. The products of the 5′ start site variability termed as “5' isomiRs” were found to be widespread in all the datasets. It was possible to identify several 5′ isomiRs that were highly distinct and abundant and supported by more than 90% of the tags that map in the region. Majority of miRNA/5′ isomiR pair share similar tissue and drought-mediated expression dynamics. Analysis of the degradome data identified targets for several of these 5′ isomiRs, thereby confirming their biological activity. Since the isomiRs are length variants at the 5′ end, the target sites were found to be accordingly shifted as compared to the target site of the annotated miRNA. Further we also observed that drought affects the processing accuracy of several miRNAs across all tissues of both the cultivars leading to differential accumulation of 5′ isomiR/miRNA pair.

Keywords

miRNA 5′ isomiR Drought N22 miRNA-processing Rice 

Notes

Author contributions

S.B. performed all the analysis related to miRNA processing and isomiR target identification, written and compiled the manuscript. S.V.J and R.J. developed the in silico pipeline. R.D.M analyzed the degradome data of rice for annotated miRs. S.R. was involved in the design, supervision, interpretation, and writing of the manuscript.

Funding information

The present work was funded by the Department of Biotechnology (DBT), Government of India (Grant no. BT/PR10071/AGR/36/31/2007 and BT/PR628/AGR/36/674/2011) and the “Scheme to strengthen R&D Doctoral Research program” of Univ. of Delhi, Delhi, India. S.B. sincerely thanks the University of Delhi for the UTA fellowship for doctoral research. R.D.M. acknowledges University Grant Commission.

Supplementary material

10142_2020_731_MOESM1_ESM.doc (10.9 mb)
ESM 1 (DOC 11162 kb)
10142_2020_731_MOESM2_ESM.xls (74 kb)
ESM 2 (XLS 73 kb)
10142_2020_731_MOESM3_ESM.xls (224 kb)
ESM 3 (XLS 223 kb)
10142_2020_731_MOESM4_ESM.xls (4.4 mb)
ESM 4 (XLS 4491 kb)

References

  1. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008a) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762PubMedPubMedCentralCrossRefGoogle Scholar
  2. Addo-Quaye C, Miller W, Axtell MJ (2008b) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed F, Senthil-Kumar M, Lee S, Dai X, Mysore KS, Zhao PX (2014) Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol 11:1414–1429PubMedCrossRefGoogle Scholar
  4. Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Funct Integr Genomics 16(3):221–233PubMedCrossRefGoogle Scholar
  5. Balyan SC, Mutum RD, Kansal S, Kumar S, Mathur S, Raghuvanshi S (2015) Insights into the small RNA-mediated networks in response to abiotic stress in plants. In: elucidation of abiotic stress signaling in plants. Springer, New York, pp 45–91CrossRefGoogle Scholar
  6. Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P, Mathur S, Raghuvanshi S (2017) Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci Rep 7:15446PubMedPubMedCentralCrossRefGoogle Scholar
  7. Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620.  https://doi.org/10.1093/jxb/erq452 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S et al (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12:R126PubMedPubMedCentralCrossRefGoogle Scholar
  9. Desvignes T, Batzel P, Berezikov E, Eilbeck K, Eppig JT, McAndrews MS, Singer A, Postlethwait JH (2015) MiRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet 31:613–626PubMedPubMedCentralCrossRefGoogle Scholar
  10. Esmaeili F, Shiran B, Fallahi H, Mirakhorli N, Budak H, Martínez-Gómez P (2017 May 1) In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 17(2–3):189–201PubMedCrossRefGoogle Scholar
  11. Feng H, Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z (2013 Nov 1) Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83(4–5):433–443PubMedCrossRefGoogle Scholar
  12. Formey D, Iñiguez LP, Peláez P, Li YF, Sunkar R, Sánchez F, Hernández G (2015) Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. BMC Genomics 16:423PubMedPubMedCentralCrossRefGoogle Scholar
  13. Jeong D-HD, Park S, Zhai J, Gurazada SGR, De Paoli E, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–4207PubMedPubMedCentralCrossRefGoogle Scholar
  14. Jeong D-H, Thatcher SR, Brown RSH, Zhai J, Park S, Rymarquis L, Meyers BC, Green PJ (2013) Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, Argonaute loading, and target cleavage. Plant Physiol 162:1225–1245PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefGoogle Scholar
  16. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou A, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(D1):D68–D73PubMedPubMedCentralCrossRefGoogle Scholar
  18. Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16:2170–2180PubMedPubMedCentralCrossRefGoogle Scholar
  19. Li T, Li H, Zhang YX, Liu JY (2010) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39(7):2821–2833PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS, Guiderdoni E (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51(12):2119–2131PubMedCrossRefGoogle Scholar
  21. Liu Q, Hu H, Zhu L, Li R, Feng Y, Zhang L, Yang Y, Liu X, Zhang H (2015 Oct 2) Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.). J Agric Food Chem 63(40):8849–8861PubMedCrossRefPubMedCentralGoogle Scholar
  22. Llorens F, Bañez-Coronel M, Pantano L, del Río JA, Ferrer I, Estivill X, Martí E (2013) A highly expressed miR−101 isomiR is a functional silencing small RNA. BMC Genomics 14:104PubMedPubMedCentralCrossRefGoogle Scholar
  23. Maunoury N, Vaucheret H (2011) AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS One 6:e28729PubMedPubMedCentralCrossRefGoogle Scholar
  24. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedPubMedCentralCrossRefGoogle Scholar
  25. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefGoogle Scholar
  26. Moreno Colaiacovo LB, Centomani I, Crosatti C, Giusti L, Orrù L, Tacconi FP (2012) A survey of microRNA length variants contributing to miRNome complexity in peach (Prunus persica L.). Front Plant Sci 3:165PubMedPubMedCentralGoogle Scholar
  27. Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S (2016) Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Scientific Reports 6 (1)Google Scholar
  28. Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends Genet 28:544–549PubMedCrossRefGoogle Scholar
  29. Newman MA, Mani V, Hammond SM (2011) Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA 17:1795–1803PubMedPubMedCentralCrossRefGoogle Scholar
  30. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692PubMedPubMedCentralCrossRefGoogle Scholar
  31. Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Tennakoon J (2008) Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5′-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a: mRNA duplexes. Genome Res 18:1571–1581PubMedPubMedCentralCrossRefGoogle Scholar
  32. Sablok G, Srivastva AK, Suprasanna P, Baev V, Ralph PJ (2015) isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front Plant Sci 6:1–4CrossRefGoogle Scholar
  33. Shao C, Lu G, Yu L, Wu Q, Chen M, Meng Y (2015) Identification of novel miRNA-target pairs in rice (Oryza sativa) by a reversed approach. Plant Omics 8:62Google Scholar
  34. Smith LM, Burbano HA, Wang X, Fitz J, Wang G, Ural-Blimke Y, Weigel D (2015) Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae. Plant J 81:597–610PubMedCrossRefGoogle Scholar
  35. Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H (2018) Constitutive expression of miR408 improves biomass and seed yield in Arabidopsis. Front Plant Sci 8:2114.yCrossRefGoogle Scholar
  36. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ (2011) The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 68:2859–2871PubMedPubMedCentralCrossRefGoogle Scholar
  37. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  38. Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, Robinson S, Zhang S, Ellis P, Langford CF, Guillot PV, Chandrashekran A, Fisk NM, Castellano L, Meister G, Winston RM, Cui W, Baulcombe D, Dibb NJ (2014) 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res 42:9424–9435PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tripathi AM, Singh A, Singh R, Verma AK, Roy S (2019) Modulation of miRNA expression in natural populations of A. thaliana along a wide altitudinal gradient of Indian Himalayas. Sci Rep 9(1):441PubMedPubMedCentralCrossRefGoogle Scholar
  40. Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice microRNA effector complexes and targets. Plant Cell 21:3421–3435PubMedPubMedCentralCrossRefGoogle Scholar
  41. Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3(1):16203PubMedCrossRefGoogle Scholar
  42. Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21:1450–1461PubMedPubMedCentralCrossRefGoogle Scholar
  43. Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394PubMedPubMedCentralCrossRefGoogle Scholar
  44. Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P (2010) miR156-targeted and non-targeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950PubMedPubMedCentralCrossRefGoogle Scholar
  45. Xu W, Cui Q, Liu A (2013) Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLos One 8:e69995PubMedPubMedCentralCrossRefGoogle Scholar
  46. Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X (2019) Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in Rice. Mol Plant 3Google Scholar
  47. Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22:2322–2335PubMedPubMedCentralCrossRefGoogle Scholar
  48. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576–593PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zhang JP, Yu Y, Feng YZ, Zhou YF, Zhang F, Yang YW, Lei MQ, Zhang YC, Chen YQ (2017) MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol 175(3):1175–1185PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170(3):1578–1594PubMedPubMedCentralCrossRefGoogle Scholar
  51. Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 5:67–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Sonia Balyan
    • 1
  • Shaji V. Joseph
    • 1
  • Rashmi Jain
    • 1
  • Roseeta Devi Mutum
    • 1
  • Saurabh Raghuvanshi
    • 1
    Email author
  1. 1.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations