Advertisement

Functional & Integrative Genomics

, Volume 20, Issue 1, pp 75–87 | Cite as

Transcriptomic analysis to affirm the regulatory role of long non-coding RNA in horn cancer of Indian zebu cattle breed Kankrej (Bos indicus)

  • Pritesh H. Sabara
  • Subhash J. Jakhesara
  • Ketankumar J. Panchal
  • Chaitanya G. Joshi
  • Prakash G. KoringaEmail author
Original Article

Abstract

Long non-coding RNA (lncRNA) was previously considered as a non-functional transcript, which now established as part of regulatory elements of biological events such as chromosome structure, remodeling, and regulation of gene expression. The study presented here showed the role of lncRNA through differential expression analysis on cancer-related coding genes in horn squamous cell carcinoma of Indian zebu cattle. A total of 10,360 candidate lncRNAs were identified and further analyzed for its coding potential ability using three tools (CPC, CPAT, and PLEK) that provide 8862 common lncRNAs. Pfam analysis of these common lncRNAs gave 8612 potential candidates for lncRNA differential expression analysis. Differential expression analysis showed a total of 59 significantly differentially expressed genes and 19 lncRNAs. Pearson’s correlation analysis was used to identify co-expressed mRNA-lncRNAs to established relation of the regulatory role of lncRNAs in horn cancer. We established a positive relation of seven upregulated (XLOC_000016, XLOC_002198, XLOC_002851, XLOC_ 007383, XLOC_010701, XLOC_010272, and XLOC_011517) and one downregulated (XLOC_011302) lncRNAs with eleven genes that are related to keratin family protein, keratin-associated protein family, cornifelin, corneodesmosin, serpin family protein, and metallothionein that have well-established role in squamous cell carcinoma through cellular communication, cell growth, cell invasion, and cell migration. These biological events were found to be related to the MAPK pathway of cell cycle regulation indicating the role of lncRNAs in manipulating cell cycle regulation during horn squamous cell carcinomas that will be useful in identifying molecular portraits related to the development of horn cancer.

Keywords

Horn cancer Bos indicus Long non-coding RNA Coding potential analysis RNA-Seq RT-qPCR 

Abbreviations

HN

horn normal

HC

horn cancer

CPC

Coding Potential Calculator

CPAT

Coding-Potential Assessment Tools

PLEK

predictor of long non-coding RNAs and messenger RNAs based on an improved K-mer scheme

lncRNA

long non-coding RNA

FPKM

fragments per kilobase of transcripts per millions mapped reads

KEGG

Kyoto Encyclopedia of Genes and Genomes

Notes

Authors’ contributions

PHS and KJP participated in sample collection, library preparation, and sequencing; PHS analyzed data and drafted manuscript; PGK conceptualized actual research project, participated in sample collection, and improved manuscript; SJJ helped in data analysis and improved manuscript; CGJ provided all facilities to carryout research. All authors read and approved the final manuscript.

Funding information

We thank the Department of Biotechnology (DBT), Government of India, New Delhi, India, for providing financial support (Grant Letter No. BT/PR13649/AAQ/1/627/2015) for this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal ethics guidelines were followed and complied as per permission from Ethical Committee norms and letter No. IAEC 525-2015.

Supplementary material

10142_2019_700_Fig8_ESM.png (348 kb)
Figure S1

Heatmap showing expression level based upon FPKM value for A) Genes and B) LncRNAs. (PNG 348 kb)

10142_2019_700_MOESM1_ESM.tif (7.9 mb)
High resolution image (TIF 8077 kb)
10142_2019_700_Fig9_ESM.png (105 kb)
Figure S2

Protein-protein interaction analysis of significant differentially expressed genes. (PNG 105 kb)

10142_2019_700_MOESM2_ESM.tif (5 mb)
High resolution image (TIF 5077 kb)
10142_2019_700_Fig10_ESM.png (220 kb)
Figure S3

Gene ontology analysis based upon significant differentially expressed genes. (PNG 220 kb)

10142_2019_700_MOESM3_ESM.tif (5.5 mb)
High resolution image (TIF 5589 kb)
10142_2019_700_Fig11_ESM.png (304 kb)
Figure S4

Interaction between different gene ontology terms identified based upon significant differentially expressed genes. (PNG 303 kb)

10142_2019_700_MOESM4_ESM.tif (5.2 mb)
High resolution image (TIF 5344 kb)
10142_2019_700_Fig12_ESM.png (250 kb)
Figure S5

Interaction between different gene ontology terms identified based upon target genes of lncRNAs. (PNG 249 kb)

10142_2019_700_MOESM5_ESM.tif (7.2 mb)
High resolution image (TIF 7373 kb)
10142_2019_700_Fig13_ESM.png (86 kb)
Figure S6

Comparison of RT-qPCR and transcriptome analysis results of selected genes and lncRNAs based upon their log2 fold change value. (PNG 86 kb)

10142_2019_700_MOESM6_ESM.tif (5.1 mb)
High resolution image (TIF 5257 kb)
10142_2019_700_MOESM7_ESM.xlsx (1.1 mb)
ESM 1 (XLSX 1092 kb)

References

  1. Asadzadeh-Aghdaei H, Zali MR, Bonad MA et al (2018) The application of gene expression profiling in predictions of occult lymph node metastasis in colorectal cancer patients. Biomedicines 6:27PubMedCentralGoogle Scholar
  2. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14:135–139PubMedGoogle Scholar
  3. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307PubMedPubMedCentralGoogle Scholar
  4. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, Springer Topics in Signal Processing, vol 2. Springer, Berlin, Heidelberg, 37–40.  https://doi.org/10.1007/978-3-642-00296-0_5 Google Scholar
  5. Billerey C, Boussaha M, Esquerre D et al (2014) Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 15:499PubMedPubMedCentralGoogle Scholar
  6. Boldrup L, Gu X, Coates PJ et al (2017) Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget 8:19389PubMedGoogle Scholar
  7. Burggraaf H (1935) Kanker aan de basis van de hoorns bij zebus, Horn-core disease of cattle. T Diergeneesk 62:1121-1136Google Scholar
  8. Caballero J, Gilbert I, Fournier E, Gagné D, Scantland S, Macaulay A, Robert C (2015) Exploring the function of long non-coding RNA in the development of bovine early embryos. Reprod Fertil Dev 27:40–52Google Scholar
  9. Chattopadyay S, Jandrotia V, Iyer P (1982) Horn cancer in sheep. Indian Veterinary Journal 59:319–320Google Scholar
  10. Chidambaranathan Reghupaty S (2017) TAF2: a potential oncogene for hepatocellular carcinoma. Dessertation, Virginia Commonwealth UniversityGoogle Scholar
  11. Chiu H-S, Somvanshi S, Patel E et al (2018) Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23:297–312.e12Google Scholar
  12. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedPubMedCentralGoogle Scholar
  13. Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931Google Scholar
  14. Dalla Pozza E, Manfredi M, Brandi J, Buzzi A, Conte E, Pacchiana R, Cecconi D, Marengo E, Donadelli M (2018) Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: an in depth proteomic study. J Cell Biochem 119:2696–2707PubMedGoogle Scholar
  15. Damodaran S, Sundararaj A, Ramakrishnan R (1979) Horn cancer in bulls. The Indian Veterinary Journal 56:248–249PubMedGoogle Scholar
  16. Dankert JT, Wiesehöfer M, Czyrnik ED, Singer BB, von Ostau N, Wennemuth G (2018) The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. PLoS One 13:e0200472PubMedPubMedCentralGoogle Scholar
  17. de Koning PJ, Kummer JA, de Poot SAH et al (2011) Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS One 6:e22645PubMedPubMedCentralGoogle Scholar
  18. Do DN, Ibeagha-Awemu EM (2017) Non-coding RNA roles in ruminant mammary gland development and lactation. In: Current Topics in Lactation. InTech Open, 5.  https://doi.org/10.5772/67194 Google Scholar
  19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21PubMedPubMedCentralGoogle Scholar
  20. Dong D, Mu Z, Zhao C, Sun M (2018) ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 18:125PubMedPubMedCentralGoogle Scholar
  21. Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M (2016) The role of metallothioneins in carcinogenesis Advances in Anatomy, Embryology and Cell Biology 218:1–117Google Scholar
  22. Escalona M, Rocha S, Posada D (2016) A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet 17:459–469PubMedPubMedCentralGoogle Scholar
  23. Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761PubMedPubMedCentralGoogle Scholar
  24. Ghosh S (2018) Epitopes of enzymes involved in sialylation with special reference to lung cancer. Research & reviews: a journal of life sciences 8:11–19Google Scholar
  25. Gładych M, Cylwa R, Kiełczewski K, Biecek P, Liloglou T, Mackiewicz A, Oleksiewicz U (2018) The expression signature of cancer-associated KRAB-ZNF factors identified in TCGA pan-cancer transcriptomic data. Mol Oncol 13:701–724Google Scholar
  26. Goff L, Trapnell C, Kelley D (2013) cummeRbund: Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data Rpackage version 2.26.0Google Scholar
  27. Gupta R, Sadana J, Kuchroo V, Kalra D (1980) Horn cancer in an intact bull. The Veterinary Record 107:312PubMedGoogle Scholar
  28. Ho DW-H, Kai AK-L, Ng IO-L (2015) TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. Front Med 9:322–330PubMedGoogle Scholar
  29. Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H, Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T, Medvedeva YA, Testa AC, Lipovich L, Yip CW, Abugessaisa I, Mendez M, Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA, Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJL, Arner E, Hayashizaki Y, Carninci P, Forrest ARR (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199–204PubMedPubMedCentralGoogle Scholar
  30. Hu J, Gao Y, Zheng Y, Shang X (2018a) KF-finder: identification of key factors from host-microbial networks in cervical cancer. BMC Syst Biol 12:54PubMedPubMedCentralGoogle Scholar
  31. Hu X, Zhai Y, Shi R et al (2018b) FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep 39:2136–2146PubMedPubMedCentralGoogle Scholar
  32. Huang G-J, Luo M-S, Chen G-P, Fu M-Y (2018) MiRNA–mRNA crosstalk in laryngeal squamous cell carcinoma based on the TCGA database. Eur Arch Otorhinolaryngol 275:751–759PubMedGoogle Scholar
  33. Ibeagha-Awemu EM, Do DN, Dudemaine P-L, Fomenky BE, Bissonnette N (2018) Integration of lncRNA and mRNA transcriptome analyses reveals genes and pathways potentially involved in calf intestinal growth and development during the early weeks of life. Genes 9:142PubMedCentralGoogle Scholar
  34. Izuhara K, Yamaguchi Y, Ohta S, Nunomura S, Nanri Y, Azuma Y, Nomura N, Noguchi Y, Aihara M (2018) Squamous cell carcinoma antigen 2 (SCCA2, SERPINB4): an emerging biomarker for skin inflammatory diseases. Int J Mol Sci 19:1102PubMedCentralGoogle Scholar
  35. Joshi B, Soni P, Fefar D, Ghodasara D, Prajapati K (2009) Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J Field Vet 5:15–18Google Scholar
  36. Kanehisa M The KEGG database. In: ‘In Silico’ simulation of biological processes: Novartis Foundation Symposium 247, 2002. Wiley Online Library, pp 91–103Google Scholar
  37. Karunanithi S, Levi L, DeVechhio J et al (2017) RBP4-STRA6 pathway drives cancer stem cell maintenance and mediates high-fat diet-induced colon carcinogenesis. Stem Cell Rep 9:438–450Google Scholar
  38. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Data Mining in Proteomics. Springer, pp 291–303Google Scholar
  39. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349PubMedPubMedCentralGoogle Scholar
  40. Koringa PG, Jakhesara SJ, Bhatt VD, Patel AB, Dash D, Joshi CG (2013) Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle. Gene 530:119–126PubMedGoogle Scholar
  41. Koufariotis LT, Chen Y-PP, Chamberlain A, Vander Jagt C, Hayes BJ (2015) A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS One 10:e0141225PubMedPubMedCentralGoogle Scholar
  42. Kulkarni H (1953) Carcinoma of horn in bovines of Old Baroda State. Indian Vet J 29:415–421Google Scholar
  43. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669PubMedPubMedCentralGoogle Scholar
  44. Lamontagne S, Fortier A-M, Parent S, Asselin E, Cadrin M (2015) Interaction between keratin intermediate filament proteins K8/18 and cancer related signal transduction proteins in epithelial cells. AACR.  https://doi.org/10.1158/1538-7445
  45. Lee J, Ngeow J (2018) Inherited thyroid cancer. In: Evidence-Based Endocrine Surgery. Springer, pp 163–171Google Scholar
  46. Lee CW, Lin SE, Tsai HI, Su PJ, Hsieh CH, Kuo YC, Sung CM, Lin CY, Tsai CN, Yu MC (2018) Cadherin 17 is related to recurrence and poor prognosis of cytokeratin 19-positive hepatocellular carcinoma. Oncol Lett 15:559–567PubMedGoogle Scholar
  47. Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinf 15:311Google Scholar
  48. Liu X, Ding X, Li X, Jin C, Yue Y, Li G, Guo H (2017) An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 48:278–286PubMedGoogle Scholar
  49. Liu Z, Ye Q, Wu L, Gao F, Xie H, Zhou L, Zheng S, Xu X (2018) Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma. Mol Carcinog 57:1435–1444PubMedGoogle Scholar
  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408Google Scholar
  51. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439PubMedGoogle Scholar
  52. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449PubMedGoogle Scholar
  53. Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10:R124PubMedPubMedCentralGoogle Scholar
  54. Mazzoccoli G, Castellana S, Carella M et al (2017) A primary tumor gene expression signature identifies a crucial role played by tumor stroma myofibroblasts in lymph node involvement in oral squamous cell carcinoma. Oncotarget 8:104913PubMedPubMedCentralGoogle Scholar
  55. Nie Y, Li S, Zheng X, Chen W, Li X, Liu Z, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C (2018) Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in carpet sheep fetal skin. Front Physiol 9:446PubMedPubMedCentralGoogle Scholar
  56. Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, Fransson S, Ganeshram A, Mondal T, Bandaru S, Östensson M, Akyürek LM, Abrahamsson J, Pfeifer S, Larsson E, Shi L, Peng Z, Fischer M, Martinsson T, Hedborg F, Kogner P, Kanduri C (2014) The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26:722–737PubMedGoogle Scholar
  57. Papa F, Siciliano RA, Inchingolo F, Mazzeo MF, Scacco S, Lippolis R (2018) Proteomics pattern associated with gingival oral squamous cell carcinoma and epulis: a case analysis. Oral Sci Int 15:41–47Google Scholar
  58. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295PubMedPubMedCentralGoogle Scholar
  59. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667PubMedPubMedCentralGoogle Scholar
  60. Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341PubMedPubMedCentralGoogle Scholar
  61. Rezende A, Naves P (1975) Horn core cancer in a zebu cow, imported to Brazil. Pesq Agropec Bras Série Veterinária 10:41–44Google Scholar
  62. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedGoogle Scholar
  63. Robles A, Ryan B (2015) KRT81 miR-SNP rs3660 is associated with risk and survival of NSCLC. Ann Oncol 27:360–361PubMedPubMedCentralGoogle Scholar
  64. Rong C, Meinert É, Hess J (2018) Estrogen receptor signaling in radiotherapy: from molecular mechanisms to clinical studies. Int J Mol Sci 19:713PubMedCentralGoogle Scholar
  65. Roth L, Srivastava S, Lindzen M et al (2018) SILAC identifies LAD1 as a filamin-binding regulator of actin dynamics in response to EGF and a marker of aggressive breast tumors. Sci Signal 11:eaan0949PubMedGoogle Scholar
  66. Savita J, Kumar BY, Nayak VN (2018) Matrix metalloproteinases in oral squamous cell carcinoma-a review. J Adv Clin Res Insights 5:124–126Google Scholar
  67. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463PubMedPubMedCentralGoogle Scholar
  68. Shi J, Yan B, Lou X, Ma H, Ruan S (2017) Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biol 17:26PubMedPubMedCentralGoogle Scholar
  69. Shiba D, Terayama M, Yamada K, Hagiwara T, Oyama C, Tamura-Nakano M, Igari T, Yokoi C, Soma D, Nohara K, Yamashita S, Dohi T, Kawamura YI (2018) Clinicopathological significance of cystatin A expression in progression of esophageal squamous cell carcinoma. Medicine 97:e0357PubMedPubMedCentralGoogle Scholar
  70. Silveira NJ, Varuzza L, Machado-Lima A et al (2008) Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries. BMC Med Genet 1:56Google Scholar
  71. Szklarczyk D, Franceschini A, Wyder S et al (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedPubMedCentralGoogle Scholar
  72. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288–299PubMedGoogle Scholar
  73. Tang Q, Zhang H, Kong M, Mao X, Cao X (2018) Hub genes and key pathways of non-small lung cancer identified using bioinformatics. Oncol Lett 16:2344–2354PubMedPubMedCentralGoogle Scholar
  74. Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, Horlings HM, Niederreiter L, Kaser A, Yang W, Goode EL, Fridley BL, Jenner RG, Berns EMJJ, Wik E, Salvesen HB, Wisman GBA, van der Zee AGJ, Davidson B, Trope CG, Lambrechts S, Vergote I, Calvert H, Jacobs IJ, Widschwendter M (2015) HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 7:108PubMedPubMedCentralGoogle Scholar
  75. Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81PubMedGoogle Scholar
  76. Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60PubMedPubMedCentralGoogle Scholar
  77. Trapnell C, Robert A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578PubMedPubMedCentralGoogle Scholar
  78. Tsuchiya KD, Davis B, Gardner RA (2017) Is intrachromosomal amplification of chromosome 21 (iAMP21) always intrachromosomal? Cancer Genet 218:10–14PubMedGoogle Scholar
  79. Vadakekolathu J, Al-Juboon SIK, Johnson C et al (2018) MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 9:344PubMedPubMedCentralGoogle Scholar
  80. Wang Y, Jin L (2018) miRNA-145 is associated with spontaneous hypertension by targeting SLC7A1. Exp Ther Med 15:548–552PubMedGoogle Scholar
  81. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74–e74PubMedPubMedCentralGoogle Scholar
  82. Weikard R, Hadlich F, Kuehn C (2013) Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics 14:789PubMedPubMedCentralGoogle Scholar
  83. Wickham H (2010) ggplot2: elegant graphics for data analysis. J Stat Softw 35:65–88Google Scholar
  84. Xiong Z, Ren S, Chen H, Liu Y, Huang C, Zhang YL, Odera JO, Chen T, Kist R, Peters H, Garman K, Sun Z, Chen X (2018) PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 244:164–175PubMedGoogle Scholar
  85. Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H, Wang X (2018) Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 19:605PubMedPubMedCentralGoogle Scholar
  86. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134Google Scholar
  87. Zhang X, Roger G, Ali M et al (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res.  https://doi.org/10.1158/0008-5472.CAN-09-3885 PubMedPubMedCentralGoogle Scholar
  88. Zhang J, Le TD, Liu L, Li J (2018) Inferring and analyzing module-specific lncRNA–mRNA causal regulatory networks in human cancer. Brief Bioinform.  https://doi.org/10.1093/bib/bby008 Google Scholar
  89. Zheng Y, Zhao G, Xu B, Liu C, Li C, Zhang X, Chang X (2016) PADI4 has genetic susceptibility to gastric carcinoma and upregulates CXCR2, KRT14 and TNF-α expression levels. Oncotarget 7:62159PubMedPubMedCentralGoogle Scholar
  90. Zheng X, Ning C, Zhao P et al (2018) Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 101:11062–11073Google Scholar
  91. Zombori T, Cserni G (2018) Immunohistochemical analysis of the expression of breast markers in basal-like breast carcinomas defined as triple negative cancers expressing keratin 5. Pathol Oncol Res 24:259–267PubMedGoogle Scholar
  92. Zubaidy AJ (1976) Horn cancer in cattle in Iraq. Vet Pathol 13:453–454PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pritesh H. Sabara
    • 1
  • Subhash J. Jakhesara
    • 1
  • Ketankumar J. Panchal
    • 1
  • Chaitanya G. Joshi
    • 1
  • Prakash G. Koringa
    • 1
    Email author
  1. 1.Department of Animal Biotechnology, College of Veterinary Science & Animal HusbandryAnand Agricultural UniversityAnandIndia

Personalised recommendations