Advertisement

Functional & Integrative Genomics

, Volume 20, Issue 1, pp 163–176 | Cite as

Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications

  • Laura Morello
  • Nikolay Pydiura
  • Dmitry Galinousky
  • Yaroslav BlumeEmail author
  • Diego BreviarioEmail author
Review

Abstract

Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.

Keywords

Flax Bast fibers Flax fibers Genome editing Tubulin CesA 

Abbreviations

TUA

α-Tubulin

TUB

β-Tubulin

MT

Microtubule

CesA

Cellulose synthase

CSC

Cellulose-synthesizing complexes

CDC

Crop Development Centre

PTM

Post-translational modification

WGD

Whole genome duplication

PCW

Primary cell wall

SCW

Secondary cell wall

SP

Snap point

CCD

Central cytoplasmic domain

CSR

Class-specific region

P-CR

Plant-conserved region

Notes

References

  1. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nat Lett 550:280–284.  https://doi.org/10.1038/nature24049 CrossRefGoogle Scholar
  2. Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefGoogle Scholar
  3. Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841.  https://doi.org/10.1074/jbc.M807456200 CrossRefPubMedGoogle Scholar
  4. Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157CrossRefGoogle Scholar
  5. Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 13:175.  https://doi.org/10.1186/1471-2164-13-175 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bastaki NK, Cullis CA (2014) Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate. J Vis Exp 94:52189.  https://doi.org/10.3791/52189 CrossRefGoogle Scholar
  7. Beerli RR, Segal DJ, Dreier B, Barbas CF III (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A 95:14628–14633CrossRefGoogle Scholar
  8. Blume YB, Krasylenko YA, Demchuk OM, Yemets AI (2013) Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front Plant Sci 4:530.  https://doi.org/10.3389/fpls.2013.00530 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Breviario D (2008) Plant tubulin genes: regulatory and evolutionary aspects. In: Nick P (ed) Plant microtubules. Plant cell monographs, vol 11. Springer, Berlin, pp 207–232Google Scholar
  10. Breviario D, Giani S, Morello L (2013) Multiple tubulins: evolutionary aspects and biological implications. Plant J 75:202–218.  https://doi.org/10.1111/tpj.12243 CrossRefPubMedGoogle Scholar
  11. Bringmann M, Landrein B, Schudoma C, Hamant O (2012a) Cracking the elusive alignment hypothesis: the microtubule–cellulose synthase nexus unraveled. Trends Plant Sci 17:666–674.  https://doi.org/10.1016/j.tplants.2012.06.003 CrossRefGoogle Scholar
  12. Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S (2012b) POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177.  https://doi.org/10.1105/tpc.111.093575 CrossRefGoogle Scholar
  13. Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571.  https://doi.org/10.1105/tpc.4.5.557 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G (2015) Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J 13(9):1312–1324.  https://doi.org/10.1111/pbi.12350 CrossRefPubMedGoogle Scholar
  15. Chen S, Jia H, Zhao H, Liu D, Liu Y, Liu B, Bauer S, Somerville CR (2016) Anisotropic cell expansion is affected through the bidirectional mobility of cellulose synthase complexes and phosphorylation at two critical residues on CESA3. Plant Physiol 171:242–250.  https://doi.org/10.1104/pp.15.01874 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double strand breaks withTAL effector nucleases. Genetics 186:757–761.  https://doi.org/10.1534/genetics.110.120717 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795.  https://doi.org/10.1007/s00122-012-1953-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dash PK, Rai R, Mahato AK, Gaikwad K, Singh NK (2017) Transcriptome landscape at different developmental stages of a drought tolerant cultivar of flax (Linum usitatissimum). Front Chem 5:82.  https://doi.org/10.3389/fchem.2017.00082 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36:W465–W469.  https://doi.org/10.1093/nar/gkn180 CrossRefPubMedGoogle Scholar
  20. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci 104:15572–15577.  https://doi.org/10.1073/pnas.0706569104 CrossRefPubMedGoogle Scholar
  21. Dhugga KS (2001) Building the wall: genes and enzyme complexes for polysaccharide synthases. Curr Opin Plant Biol 2:488–493CrossRefGoogle Scholar
  22. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420CrossRefGoogle Scholar
  23. Dostál V, Libusová L (2014) Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. Protoplasma 251:991–1005.  https://doi.org/10.1007/s00709-014-0633-0 CrossRefPubMedGoogle Scholar
  24. Ermawar RA, Collins HM, Byrt CS, Henderson M, O’Donovan LA, Shirley NJ, Schwerdt JG, Lahnstein J, Fincher GB, Burton RA (2015) Genetics and physiology of cell wall polysaccharides in the model C4 grass, Setaria viridis spp. BMC Plant Biol 15:236.  https://doi.org/10.1186/s12870-015-0624-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108:E1195–E1203.  https://doi.org/10.1073/pnas.1108942108 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Freedman H, Luchko T, Luduena RF, Tuszynski JA (2011) Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface. Proteins 79:2968–2982.  https://doi.org/10.1002/prot.23155 CrossRefPubMedGoogle Scholar
  27. Gadadhar S, Bodakuntla S, Natarajan K, Janke C (2017) The tubulin code at a glance. J Cell Sci 130:1347–1353.  https://doi.org/10.1242/jcs.199471 CrossRefPubMedGoogle Scholar
  28. Galinousky D, Padvitski T (2017) Analysis of public RNA-seq data in studies of flax fibre biogenesis. EuroBiotech J 1:177–179.  https://doi.org/10.24190/ISSN2564-615X/2017/02.10 CrossRefGoogle Scholar
  29. Galinousky D, Padvitski T, Bayer G, Pirko Y, Pydiura N, Anisimova N, Nikitinskaya T, Khotyleva L, Yemets A, Kilchevsky A, Blume Y (2017) Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.). Cell Biol Int.  https://doi.org/10.1002/cbin.10837 CrossRefGoogle Scholar
  30. Gardiner J (2013) The evolution and diversification of plant microtubule-associated proteins. Plant J 75:219–229.  https://doi.org/10.1111/tpj.12189 CrossRefPubMedGoogle Scholar
  31. Gavazzi F, Pigna G, Braglia L, Gianì S, Breviario D, Morello L (2017) Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. Plant Biol 17(237):237.  https://doi.org/10.1186/s12870-017-1186-0 CrossRefGoogle Scholar
  32. Gianì S, Altana A, Campanoni P, Morello L, Breviario D (2009) In transgenic rice, alpha- and beta-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression. Transgenic Res 18:151–162.  https://doi.org/10.1007/s11248-008-9202-7 CrossRefPubMedGoogle Scholar
  33. Gorshkov O, Mokshina N, Gorshkov V, Chemikosova S, Gogolev Y, Gorshkova T (2017) Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. Plant Mol Biol 93:431–449.  https://doi.org/10.1007/s11103-016-0571-7 CrossRefPubMedGoogle Scholar
  34. Gorshkova T, Sal’nikova V, Chemikosova S, Ageeva M, Pavlencheva N, van Dam J (2003) The snap point: a transition point in Linum usitatissimum bast fibre development. Industr Crops Products 18:213–221.  https://doi.org/10.1016/S0926-6690(03)00043-8 CrossRefGoogle Scholar
  35. Gorshkova TA, Mikshina PV, Gurjanov OP, Chemikosova SB (2010) Formation of plant cell wall supramolecular structure. Biochemistry (Mosc) 75:159–172CrossRefGoogle Scholar
  36. Gorshkova T, Chernova T, Mokshina N, Ageeva M, Mikshina P (2018) Plant ‘muscles’: fibres with a tertiary cell wall. New Phytol 218:66–72.  https://doi.org/10.1111/nph.14997 CrossRefPubMedGoogle Scholar
  37. Goudenhooft C, Bourmaud A, Baley C (2017) Varietal selection of flax over time: evolution of plant architecture related to influence on the mechanical properties of fibres. Industr Crops Products 97:56–64.  https://doi.org/10.1016/j.indcrop.2016.11.062 CrossRefGoogle Scholar
  38. Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405.  https://doi.org/10.1126/science.138.3548.1404 CrossRefPubMedGoogle Scholar
  39. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci U S A 107:12866–12871.  https://doi.org/10.1073/pnas.1007092107 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Guo Y, Qiu C, Long S, Chen P, Hao D, Preisner M, Wang H, Wang Y (2017) Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fibre-bearing phloem tissue. Gene 626:32–40.  https://doi.org/10.1016/j.gene.2017.05.002 CrossRefGoogle Scholar
  41. Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120(1):79–98.  https://doi.org/10.1007/s10265-006-0057-9 CrossRefPubMedGoogle Scholar
  42. He X, Qin Y, Xu Y, Hu C, Zhu Y (2008) Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot 59:2687–2695.  https://doi.org/10.1093/jxb/ern127 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739.  https://doi.org/10.1046/j.1365-313X.2003.01759.x CrossRefGoogle Scholar
  44. Hobson N, Deyholos MK (2013) Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes. BMC Genomics 14:344.  https://doi.org/10.1186/1471-2164-14-344 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324.  https://doi.org/10.1104/pp.123.4.1313 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hotte NSC, Deyholos MK (2008) A flax proteome: identification of proteins enriched in bast fibres. BMC Plant Biol 8:52.  https://doi.org/10.1186/1471-2229-8-52 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ishida T, Hashimoto TJ (2007) An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. Plant Res 120:635–640.  https://doi.org/10.1007/s10265-007-0105-0 CrossRefGoogle Scholar
  48. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2016) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657.  https://doi.org/10.1111/pbi.12663 CrossRefGoogle Scholar
  49. Jovanović AM, Durst S, Nick P (2010) Plant cell division is specifically affected by nitrotyrosine. J Exp Bot 61:901–909.  https://doi.org/10.1093/jxb/erp369 CrossRefPubMedGoogle Scholar
  50. Kim YG (1996) Hybrid restriction enzymes: zinc finger fusions to Fok1 cleavage domain. Proc Natl Acad Sci U S A 93:1156–1180.  https://doi.org/10.1073/pnas.93.3.1156 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086.  https://doi.org/10.1105/tpc.11.11.2075 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochem 112:91–99.  https://doi.org/10.1016/j.phytochem.2014.07.009 CrossRefGoogle Scholar
  53. Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254.  https://doi.org/10.1016/j.tplants.2009.02.004 CrossRefPubMedGoogle Scholar
  54. Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 13:684.  https://doi.org/10.1186/1471-2164-13-684 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lei L, Li S, Gu Y (2012) Cellulose synthase complexes: composition and regulation. Front Plant Sci 3:75.  https://doi.org/10.3389/fpls.2012.00075 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Li X, Cai L, Cheng N, Liu J (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674.  https://doi.org/10.1104/pp.005538 CrossRefGoogle Scholar
  57. Li S, Lei L, Somerville C, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci U S A 109:185–190.  https://doi.org/10.1073/pnas.1118560109 CrossRefPubMedGoogle Scholar
  58. Li F, Xie G, Huang J, Zhang R, Li Y, Zhang M, Wang Y, Li A, Li X, Xia T, Qu C, Hu F, Ragauskas AJ, Peng L (2017) OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J 15:1093–1104.  https://doi.org/10.1111/pbi.12700 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Long SH, Deng X, Wang YF, Li X, Qiao RQ, Qiu CS, Guo Y, Hao DM, Jia WQ, Chen XB (2012) Analysis of 2,297 expressed sequence tags (ESTs) from a cDNA library of flax (Linum ustitatissimum L.) bark tissue. Mol Biol Rep 39:6289–6296.  https://doi.org/10.1007/s11033-012-1450-1 CrossRefPubMedGoogle Scholar
  60. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985.  https://doi.org/10.1104/pp.15.00636 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525.  https://doi.org/10.1016/j.molp.2016.11.013 CrossRefPubMedGoogle Scholar
  62. Ludvíková M, Griga M (2015) Transgenic flax/linseed (Linum usitatissimum L.) – expectations and reality. Czech J Genet Plant Breed 51:123–141.  https://doi.org/10.17221/104/2015-CJGPB CrossRefGoogle Scholar
  63. Lund G, Messing J, Viotti A (1995) Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol Gen Genet 246:716–722.  https://doi.org/10.1007/BF00290717 CrossRefGoogle Scholar
  64. Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21.  https://doi.org/10.1186/s13578-017-0148-4 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974CrossRefGoogle Scholar
  66. McHughen A (1989) Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep 8:445–449.  https://doi.org/10.1007/BF00269045 CrossRefPubMedGoogle Scholar
  67. McHughen A, Rowland GG, Holm FA, Bhatty RS, Kenaschuk EO (1997) CDC Triffid transgenic flax. Can J Plant Sci 77:641–643.  https://doi.org/10.4141/P96-188 CrossRefGoogle Scholar
  68. Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous s: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565.  https://doi.org/10.1093/jxb/err339 CrossRefPubMedGoogle Scholar
  69. Mokshina N, Gorshkova T, Deyholos MK (2014) Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibres. PLoS One 9:e97949.  https://doi.org/10.1371/journal.pone.0097949 CrossRefGoogle Scholar
  70. Mokshina N, Gorshkov O, Ibragimova N, Chernova T, Gorshkova T (2017) Cellulosic fibres of flax recruit both primary and secondary cell wall cellulose synthases during deposition of thick tertiary cell walls and in the course of graviresponse. Funct Plant Biol 44:820–831.  https://doi.org/10.1071/FP17105 CrossRefGoogle Scholar
  71. Morello L, Troina F, Gianì S, Breviario D (2011) Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. J Exp Bot 62:533–544.  https://doi.org/10.1093/jxb/erq273 CrossRefPubMedGoogle Scholar
  72. Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogue F, Faure JD (2016) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739.  https://doi.org/10.1111/pbi.12671 CrossRefGoogle Scholar
  73. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567.  https://doi.org/10.1104/pp.113.228262 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203.  https://doi.org/10.1038/34465 CrossRefPubMedGoogle Scholar
  75. Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ (2007) Differential expansion and expression of alpha- and beta-tubulin gene families in Populus. Plant Physiol 145:961–973.  https://doi.org/10.1104/pp.107.107086 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Oda Y (2015) Cortical microtubule rearrangements and cell wall patterning. Front Plant Sci 6:236.  https://doi.org/10.3389/fpls.2015.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Oda Y, Iida Y, Nagashima Y, Sugiyama Y, Fukuda H (2015) Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric Golgi-complex 2 protein. Plant Cell Physiol 56:277–286.  https://doi.org/10.1093/pcp/pcu197 CrossRefPubMedGoogle Scholar
  78. Oomah BD (2001) Flaxseed as a functional food source. J Sci Food Agric 81:889–894.  https://doi.org/10.1002/jsfa.898 CrossRefGoogle Scholar
  79. Paredez A, Somerville C, Ehrhardt D (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495.  https://doi.org/10.1126/science.1126551 CrossRefPubMedGoogle Scholar
  80. Paredez AR, Persson S, Ehrhardt DW, Somerville CR (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol 147:1723–1734.  https://doi.org/10.1104/pp.108.120196 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Parker AL, Teo WS, Pandzi E, Vicente J, McCarroll JA, Wordeman L, Kavallaris M (2018) β-Tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells. Life Sci Alliance 1:e201800059.  https://doi.org/10.26508/lsa.201800059 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 93:12637–12642CrossRefGoogle Scholar
  83. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589.  https://doi.org/10.1111/pbi.12284 CrossRefGoogle Scholar
  84. Pinzón-Latorre D, Deyholos MK (2013) Characterization and transcript profiling of the pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) gene families in flax (Linum usitatissimum). BMC Genomics 14:742.  https://doi.org/10.1186/1471-2164-14-742 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pydiura NA, Bayer GY, Galinousky DV, Yemets AI, Pirko YV, Podvitski TA, Anisimova NV, Khotyleva LV, Kilchevski AV, Blume YB (2015) Bioinformatic search for cellulose synthase genes in flax (Linum usitatissimum) and their phylogenetic analysis. Cytol Genetics 49:279–287.  https://doi.org/10.3103/S0095452715050084 CrossRefGoogle Scholar
  86. Pydiura N, Pirko Y, Galinousky D, Postovoitova A, Yemets A, Kilchevsky A, Blume Y (2018) Genome-wide identification, phylogenetic classification, and exon-intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum). Cell Biol Intl.  https://doi.org/10.1002/cbin.11001 CrossRefGoogle Scholar
  87. Roach MJ, Deyholos MK (2007) Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues. Mol Gen Genomics 278:149–165.  https://doi.org/10.1007/s00438-007-0241-1 CrossRefGoogle Scholar
  88. Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA (2011) Development of cellulosic secondary walls in flax fibres requires beta-galactosidase. Plant Physiol 156:1351–1363.  https://doi.org/10.1104/pp.111.172676 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Roberts E, Roberts AW (2009) A cellulose synthase gene from the red alga Porphyra yezoensis (Rhodophyta). J Phycol 45:203–212.  https://doi.org/10.1111/j.1529-8817.2008.00626.x CrossRefPubMedGoogle Scholar
  90. Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.  https://doi.org/10.1016/j.cell.2017.08.030 CrossRefPubMedGoogle Scholar
  91. Ryan CD, Smyth SJ (2012) Economic implications of low-level presence in a zero-tolerance European import market: the case of Canadian Triffid flax. AgBioForum 15:21–30Google Scholar
  92. Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schöpke CR, Gocal GFW (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928.  https://doi.org/10.1104/pp.15.01696 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Schröder J, Stenger H, Wernicke W (2001) α-Tubulin genes are differentially expressed during leaf cell development in barley (Hordeum vulgare L.). Plant Mol Biol 45:723–730.  https://doi.org/10.1023/A:1010648519206 CrossRefPubMedGoogle Scholar
  94. Schunder E, Rydsewski GR, Heuner K (2013) First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol 303:51–60.  https://doi.org/10.1016/j.ijmm.2012.11.004 CrossRefPubMedGoogle Scholar
  95. Selvaa Kumar C, Gadewal N, Mohammed SM (2015) Seminal role of deletion of amino acid residues in H1-S2 and S-loop regions in eukaryotic ß-tubulin investigated from docking and dynamics perspective. J Theor Biol 378:79–88.  https://doi.org/10.1016/j.jtbi.2015.04.035 CrossRefGoogle Scholar
  96. Serrano L, de la Torre J, Maccioni RB, Avila J (1984) Involvement of the carboxyl-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci U S A 81:5989–5993CrossRefGoogle Scholar
  97. Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, Yingling YG (2013) Plant cellulose synthase structure. Proc Natl Acad Sci U S A 110:7512–7517.  https://doi.org/10.1073/pnas.1301027110 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688.  https://doi.org/10.1038/nbt.2650 CrossRefPubMedGoogle Scholar
  99. Shysha EN, Korkhovyu VI, Bayer GYA, Guzenko EV, Lemesh VA, Kartel NA, Yemets AI, Blume YB (2013) Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules. Cytol Genet 47:3–11.  https://doi.org/10.3103/S0095452713020096 CrossRefGoogle Scholar
  100. Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222.  https://doi.org/10.1080/10408390903537241 CrossRefGoogle Scholar
  101. Smertenko A, Blume Y, Viklicky V, Opatrny Z, Draber P (1997) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358.  https://doi.org/10.1007/s004250050077 CrossRefGoogle Scholar
  102. Smith J, Grizot S, Arnold S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Pâques F, Duchateau P (2006) A combinatorial approach to create artificial homing endonuclease cleaving chosen sequences. Nucleic Acids Res 34:e149.  https://doi.org/10.1093/nar/gkl720 CrossRefGoogle Scholar
  103. Spokevicius AV, Southerton SG, MacMillan CP, Qiu D, Gan S, Tibbits JFG, Moran GF, Bossinger G (2007) β-Tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J 51:717–726.  https://doi.org/10.1111/j.1365-313X.2007.03176.x CrossRefPubMedGoogle Scholar
  104. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631.  https://doi.org/10.1016/j.molp.2016.01.001 CrossRefPubMedGoogle Scholar
  105. Sveinsson S, McDill J, Wong GKS, Li J, Li X, Deyholos M, Cronk QCB (2014) Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics. Ann Bot 113:753–761.  https://doi.org/10.1093/aob/mct306 CrossRefPubMedGoogle Scholar
  106. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945.  https://doi.org/10.1104/pp.15.00793 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196.  https://doi.org/10.1038/417193a CrossRefPubMedGoogle Scholar
  108. Titok V, Leontiev V, Shostak L, Khotyleva L (2006) Thermogravimetric analysis of the flax bast fibre bundle. J Nat Fibres 3:35–41.  https://doi.org/10.1300/J395v03n01_04 CrossRefGoogle Scholar
  109. Titok VV, Lemesh VA, Jurenkova SI, Khotyleva LV (2010) Genetics, physiology and biochemistry of flax. Belaruskaya navuka, Minsk In RussianGoogle Scholar
  110. Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Höfte H, Gonneau M, Vernhettes S (2014) The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol 165:1521–1532.  https://doi.org/10.1104/pp.114.241216 CrossRefPubMedPubMedCentralGoogle Scholar
  111. van Zeist W, Bakker-Heeres JAH (1975) Evidence for linseed cultivation before 6000 BC. J Archaeol Sci 2:215–219.  https://doi.org/10.1016/0305-4403(75)90059-X CrossRefGoogle Scholar
  112. Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74.  https://doi.org/10.1186/1471-2229-11-74 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Vergara CE, Carpita NC (2001) β-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3), (1→4) β-D-glucan synthase. Plant Mol Biol 47:145–160.  https://doi.org/10.1023/A:1010631431620 CrossRefGoogle Scholar
  114. Vukašinović N, Oda Y, Pejchar P, Synek L, Pečenková T, Rawat A, Sekereš J, Potocký M, Žárský V (2017) Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol 213:1052–1067.  https://doi.org/10.1111/nph.14267 CrossRefPubMedGoogle Scholar
  115. Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of alpha-tubulin in Zea mays L are highly tissue specific. Planta 218:460–465.  https://doi.org/10.1007/s00425-003-1122-4 CrossRefPubMedGoogle Scholar
  116. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK-S, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473.  https://doi.org/10.1111/j.1365-313X.2012.05093.x CrossRefPubMedGoogle Scholar
  117. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951.  https://doi.org/10.1038/nbt.2969 CrossRefPubMedGoogle Scholar
  118. Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:198–203.  https://doi.org/10.1126/science.aac7446 CrossRefGoogle Scholar
  119. Wightman R, Turner SR (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54:794–805.  https://doi.org/10.1111/j.1365-313X.2008.03444.x CrossRefPubMedGoogle Scholar
  120. Wijayanto T, McHughen A (1999) Genetic transformation of Linum by particle bombardment. In Vitro Cell Dev Biol Plant 35:456–465.  https://doi.org/10.1007/s11627-999-0068-z CrossRefGoogle Scholar
  121. Wilson PG, Borisy GG (1997) Evolution of the multi-tubulin hypothesis. Bioessays 19:451–454.  https://doi.org/10.1002/bies.950190603 CrossRefPubMedGoogle Scholar
  122. Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775.  https://doi.org/10.1111/tpj.13899 CrossRefPubMedGoogle Scholar
  123. Worden N, Wilkop TE, Esteve VE, Jeannotte R, Lathe R, Vernhettes S, Weimer B, Hicks G, Alonso J, Labavitch J, Persson S, Ehrhardt D, Drakakaki G (2015) CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1. Plant Physiol 167:381–393.  https://doi.org/10.1104/pp.114.249003 CrossRefPubMedGoogle Scholar
  124. Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061.  https://doi.org/10.1093/nar/gkt555 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci U S A 91:6050–6053CrossRefGoogle Scholar
  126. Yurkevich OY, Kirov IV, Bolsheva NL, Rachinskaya OA, Grushetskaya ZE, Zoschuk SA, Samatadze TE, Bogdanova MV, Lemesh VA, Amosova AV, Muravenko OV (2017) Integration of physical, genetic, and cytogenetic mapping data for cellulose synthase (CesA) genes in flax (Linum usitatissimum L.). Front Plant Sci 8:1467.  https://doi.org/10.3389/fpls.2017.01467 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Zhang N, Deyholos MK (2016) RNASeq analysis of the shoot apex of flax (Linum usitatissimum) to identify phloem fibre specification genes. Front Plant Sci 7(950).  https://doi.org/10.3389/fpls.2016.00950
  128. Zhang D, Waldsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci U S A 87:8820–8824CrossRefGoogle Scholar
  129. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617.  https://doi.org/10.1038/ncomms12617 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198.  https://doi.org/10.3390/ma6115171 CrossRefGoogle Scholar
  131. Zhu Y, Klompe SE, Vlot M, van der Oost J, Staals RHJ (2018) Shooting the messenger: RNA-targeting CRISPR-Cas systems. Biosci Rep 38:BSR20170788.  https://doi.org/10.1042/BSR20170788 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto di Biologia e Biotecnologia Agraria IBBA-CNRMilanItaly
  2. 2.Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations