Advertisement

Functional & Integrative Genomics

, Volume 19, Issue 1, pp 151–169 | Cite as

An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses

  • Tiago Benedito dos SantosEmail author
  • João D. M. Soares
  • Joni E. Lima
  • Juliana C. Silva
  • Suzana T. Ivamoto
  • Viviane Y. Baba
  • Silvia G. H. Souza
  • Alan P. R. Lorenzetti
  • Alexandre R. Paschoal
  • Anderson R. Meda
  • Milton Y. Nishiyama Júnior
  • Úrsula C. de Oliveira
  • João B. Mokochinski
  • Romain Guyot
  • Inácio L. M. Junqueira-de-Azevedo
  • Antônio V. O. Figueira
  • Paulo Mazzafera
  • Osvaldo R. Júnior
  • Luiz G. E. Vieira
  • Luiz F. P. Pereira
  • Douglas S. Domingues
Original Article

Abstract

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

Keywords

Coffee Nitrogen transport Differential gene expression RNA-seq microRNA 

Notes

Acknowledgments

This study received grants from Brazilian Coffee Research Consortium, Fundação Araucária, CAPES (Ciência sem Fronteiras PVE 084/2013) and CNPq. TBS, JDMS, JCS, VYB, and STI acknowledge CAPES, CNPq, and FAPESP for the student fellowships. DSD, LGEV, and LFPP are CNPq research productivity fellows.

Author contribution statement

TBS, LGEV, and LFPP conceived and designed the research, performed transcriptional experiments, wrote and revised the final manuscript; ARM assisted in designing the experiment; JEL performed experiments using 15N and wrote the manuscript; STI RT-qPCR statistical analysis, revised the final manuscript; JDMS and VYB RT-qPCR and statistical analyses; SGHS performed GS and NR analyses; JBM and PM performed the amino acid analysis; MYNJ, JCS, ORJ, APRL, and ARP bioinformatic analysis; ILMJA and UCO library construction and mRNAseq sequencing; RG and DSD transposable element analysis, coordinated the research, and revised the final manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10142_2018_634_MOESM1_ESM.xls (280 kb)
ESM 1 (XLS 280 kb)
10142_2018_634_MOESM2_ESM.fa (2.8 mb)
ESM 2 (FA 2908 kb)
10142_2018_634_MOESM3_ESM.jpg (63 kb)
Fig. S1 N starvation experiment scheme. a Initially, seeds were germinated in sand boxes and transfered to pots with continuous N supply. Three-month-old plants were transferred to a nutrient solution based on Clark’s (1975). After acclimation, plants were harvested (experimental control, day 0) and then transferred to N-starvation solution for 10 days. b Lateral roots were collected for analysis at different sampling times (day 0, day 1, and day 10). (JPG 63 kb)
10142_2018_634_MOESM4_ESM.jpg (51 kb)
Fig. S2 Quantification of total N and related-enzymes in coffee root. a Total concentration of N in coffee roots. b Nitrate reductase (NR) enzyme activity in coffee roots. c Glutamine synthetase (GS) enzyme activity in coffee roots under N starvation. Different letters above the bars indicate statistically significant differences (Student’s t test; p < 0.05). FW fresh weight (JPG 50 kb)
10142_2018_634_MOESM5_ESM.jpg (64 kb)
Fig. S3 Number of assembled sequences with hits in the Coffea canephora reference transposable elements (TE) database (806), RepBase Plants transposable elements database (35), and both databases (21). (JPG 63 kb)
10142_2018_634_MOESM6_ESM.doc (541 kb)
Fig. S4 miRNA hairpin sequences of conserved families and precursors found in the Coffea canephora genome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 541 kb)
10142_2018_634_MOESM7_ESM.doc (40 kb)
Fig. S5 miRNA hairpin sequences of conserved families and precursors found in Coffea arabica root transcriptome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 40 kb)
10142_2018_634_MOESM8_ESM.doc (904 kb)
Fig. S6 New miRNA families and precursors identified in Coffea canephora genome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 903 kb)
10142_2018_634_MOESM9_ESM.doc (40 kb)
Fig. S7 Eight new miRNA families and precursors identified in Coffea arabica root transcriptome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 40 kb)
10142_2018_634_MOESM10_ESM.jpg (103 kb)
Fig. S8 Annotation of the 253 putative miRNAs target genes identified in our coffee root trancriptome database. The most represented classes were divided into three main categories: “cellular component,” “molecular function,” and “biological process.” (JPG 102 kb)
10142_2018_634_MOESM11_ESM.jpg (82 kb)
Fig. S9 Proposed model for the representation of ammonium and nitrate transporters in coffee roots under N starvation. (JPG 81 kb)

References

  1. Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, Amin MR, Rahman MM (2014) Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci 21:3–12PubMedGoogle Scholar
  2. Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. URL http://www.Bioinformatics.Babraham.Ac.Uk/projects/fastqc
  3. Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2012) Cytochromes p450. Arabidopsis Book 9:e0144Google Scholar
  4. Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H (2015) The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant Cell Physiol 56:2035–2051PubMedPubMedCentralGoogle Scholar
  5. Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887PubMedGoogle Scholar
  6. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  7. Bu Y, Sun B, Zhou A, Zhang X, Lee I, Liu S (2013) Identification and characterization of a PutAMT1; 1 Gene from Puccinellia tenuiflora. PLoS One 8(12):e83111PubMedPubMedCentralGoogle Scholar
  8. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622Google Scholar
  9. Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747PubMedGoogle Scholar
  10. Camañes G, Cerezo M, Primo-Millo E, Gojon A, Garcia-Agustin P (2009) Ammonium transport and CitAMT1 expression are regulated by light and sucrose in Citrus plants. J Exp Bot 58:2811–2825Google Scholar
  11. Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Guerreiro-Filho O, Maluf MP (2014) Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics 15:66PubMedPubMedCentralGoogle Scholar
  12. Carelli MLC, Fahl JI (1991) Distribuição da assimilação do nitrato e da matéria seca em plantas jovens de café cultivadas em diferentes níveis de nitrogênio. Bragantia 50:29–37Google Scholar
  13. Carelli MLC, Fahl JI, Ramalho JDC (2006) Aspects of nitrogen metabolism in coffee plants. Braz J Plant Physiol 18:9–21Google Scholar
  14. Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual MB, Avila C, Cánovas FM (2015) Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC Plant Biol 15:20PubMedPubMedCentralGoogle Scholar
  15. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116Google Scholar
  16. Chapman DJ, Harrison PJ (1988) Nitrogen metabolism and measurement of nitrate reductase activity. In: Lobban CS, Chapman DJ, Kremer B (eds) Experimental phycology. A laboratory manual. Cambridge University Press, Cambridge, pp 196–202Google Scholar
  17. Chaves SS, Fernandes-Brum CN, Silva GFF, Ferrara-Barbosa BC, Paiva LV, Nogueira FTS, Cardoso TCS, Amaral LR, de Souza GM, Chalfun-Junior A (2015) New insights on Coffea miRNAs: features and evolutionary conservation. Appl Biochem Biotech 177:879–908Google Scholar
  18. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179–e179PubMedPubMedCentralGoogle Scholar
  19. Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agr Food Chem 23:458–460Google Scholar
  20. Coleman HD, Canovas FM, Man H, Kirby EG, Mansfield SD (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula x alba) (717-1B4). Plant Biotech J 10:883–889Google Scholar
  21. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–13Google Scholar
  22. Crawford N, Glass A (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395Google Scholar
  23. Cruz JL, Mosquim PR, Pelacani CR, Araújo WL, DaMatta FM (2004) Effects of nitrate nutrition on nitrogen metabolism in cassava. Biol Plantarum 48:67–72Google Scholar
  24. da Silva AC, Grativol C, Thiebaut F, Hemerly AS, Ferreira PCG (2016) Computational identification and comparative analysis of miRNA precursors in three palm species. Planta 243:1265–1277PubMedGoogle Scholar
  25. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159PubMedPubMedCentralGoogle Scholar
  26. de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS (2013) Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 53:315–325PubMedGoogle Scholar
  27. de Carvalho K, Petkowicz CL, Nagashima GT, Bespalhok Filho JC, Vieira LG, Pereira LFP, Domingues DS (2014) Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Gen Genomics 289:951–963Google Scholar
  28. Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley J, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono RM, Rouard M, Rozas J, Tranchant-Dubreui C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, Kochko A, Graziosi G, Henry RJ, Jayarama MR, Nagai C, Rounsley S, Sankof D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184Google Scholar
  29. Devi KJ, Chakrabortya S, Debb B, Rajwanshia R (2016) Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequences (GSSs) of coffee (Coffea arabica L.). Plant Gene 6:30–42Google Scholar
  30. dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS (2017) Genome- wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 40:346–359PubMedPubMedCentralGoogle Scholar
  31. Dovis VL, Hippler FWR, Silva KI, Ribeiro RV, Machado EC, Mattos D Jr (2014) Optimization of the nitrate reductase activity assay for citrus trees. Braz J Bot 37:383–390Google Scholar
  32. Fernandez D, Tisserant E, Talhinhas P, Azinheira H, Vieira A, Petitot AS, Loureiro A, Poulain J, da Silva C, Do Céu Silva M, Duplessis S (2012) 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant–rust interaction. Mol Plant Pathol 13:17–37PubMedGoogle Scholar
  33. Ferreira DF (2011) Sisvar: Sistema de análise de variância para dados balanceados. Versão 5.3, Build 75. Lavras: DEX/ UFLAGoogle Scholar
  34. Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. BBA-Biomembranes 1465:219–235PubMedGoogle Scholar
  35. Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot 58:2339–2358PubMedGoogle Scholar
  36. Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864PubMedGoogle Scholar
  37. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma BBW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652PubMedPubMedCentralGoogle Scholar
  38. Graff L, Obrdlik P, Yuan L, Loqué D, Frommer WB, von Wirén N (2011) N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. J Exp Bot 62:1361–1373PubMedGoogle Scholar
  39. Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5:3050PubMedGoogle Scholar
  40. Gutiérrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7PubMedPubMedCentralGoogle Scholar
  41. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132PubMedPubMedCentralGoogle Scholar
  42. Guyot R, Chaparro C, Bocs S, Dereeper A, Jamilloux V, Domingues DS, Lashermes P (2014) The repetitive landscape of the Robusta coffee genome. In: 11th Solanaceae Conference: 52–52Google Scholar
  43. Guzman F, Almerão MP, Körbes AP, Loss-Morais G, Margis R (2012) Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS One 7(11):e49811PubMedPubMedCentralGoogle Scholar
  44. Heberle H, Vaz Meirelles G, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169PubMedPubMedCentralGoogle Scholar
  45. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Phys 151:2120–2132Google Scholar
  46. Ivamoto ST, Sakuray LM, Ferreira LP, Kitzberger CSG, Scholz MBS, Pot D, Leroy T, Vieira LGE, Domingues DS, Pereira LFP (2017a) Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiol Bioch 111:340–347Google Scholar
  47. Ivamoto ST, Reis Júnior O, Domingues DS, dos Santos TB, de Oliveira FF, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, LFP P (2017b) Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. reveals the differential expression of genes Involved in raffinose biosynthesis. PloS ONE 12(1):e0169595PubMedPubMedCentralGoogle Scholar
  48. Jia X, Jie S, Hui L, Fang L, Na D, Changgyong G, Sitakanta P, Barunava P, Runzhi L, Ling Y (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293PubMedGoogle Scholar
  49. Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Kochko A, Dussert S (2009) Metabolic pathways in tropical dicot albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162PubMedPubMedCentralGoogle Scholar
  50. Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Lashermes F, Dussert S (2014) Regulation of galactomannan biosynthesis in coffee seeds. J Exp Bot 65:323–337PubMedGoogle Scholar
  51. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytoge Gen Res 110:462–467Google Scholar
  52. Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in. Plant Sci 6:506Google Scholar
  53. Kojima S, Bohner A, Gassert B, Yuan L, von Wirén N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40PubMedGoogle Scholar
  54. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349PubMedPubMedCentralGoogle Scholar
  55. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedGoogle Scholar
  56. Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Phys 157:1255–1258Google Scholar
  57. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signalling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273PubMedGoogle Scholar
  58. Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R (2015) NPK macronutrients and microRNA homeostasis. Frontiers in Plant Sci 6:451Google Scholar
  59. Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009) Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21:3610–3622PubMedPubMedCentralGoogle Scholar
  60. Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci 19:5–9PubMedGoogle Scholar
  61. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323PubMedPubMedCentralGoogle Scholar
  62. Li H, Han JL, Chang YH, Lin J, Yang QS (2016) Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia). J Plant Res 129:737–748PubMedGoogle Scholar
  63. Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7(11):e48951PubMedPubMedCentralGoogle Scholar
  64. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− CT method. Methods 25:402–408PubMedPubMedCentralGoogle Scholar
  65. Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305PubMedGoogle Scholar
  66. Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wiren N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant J 48:522–534Google Scholar
  67. Loss-Morais G, Ferreira DCR, Margis R, Alves-Ferreira M, Corrêa RL (2014) Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica. Genet Mol Biol 37:671–682PubMedPubMedCentralGoogle Scholar
  68. Luo J, Qin J, He F, Li H, Liu T, Polle A, Peng C, Luo ZB (2013) Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta 237:919–931PubMedGoogle Scholar
  69. Marraccini P, Vinecky F, Alves GS, Ramos HJ, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212PubMedPubMedCentralGoogle Scholar
  70. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qio Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190PubMedPubMedCentralGoogle Scholar
  71. Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119PubMedGoogle Scholar
  72. Miyazawa M et al (1999) Análise química de tecido vegetal. In: Silva, f. c. da (Org.). Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília, pp 171–223Google Scholar
  73. Mofatto LS, de Araújo CF, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol 16:94PubMedPubMedCentralGoogle Scholar
  74. Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30PubMedPubMedCentralGoogle Scholar
  75. Nath M, Tuteja N (2016) NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma 253:767–786PubMedGoogle Scholar
  76. Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. BBA-Proteins and Proteomics 1814:14–18PubMedGoogle Scholar
  77. Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci 209:32–45PubMedGoogle Scholar
  78. Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996PubMedGoogle Scholar
  79. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Phys 150:1541–1555Google Scholar
  80. Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 13:1052–1060Google Scholar
  81. Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273Google Scholar
  82. Queiroz CGS, Alves JD, Rena AB, Cordeiro AT (1991) Efeito do cloranfenicol, n- propanol, pH e temperatura sobre a atividade in vivo da redutase do nitrato em cafeeiros jovens. Rev Bras Bot 14:73–77Google Scholar
  83. Queiroz CGS, Rena AB, Cordeiro AT, Alves JD (1993) Ritmo diurno na atividade da redutase de nitrato em folhas e raízes de Coffea arabica L. Pesqui Agropecu Bras 28:787–795Google Scholar
  84. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: <http://www.r-project.org>
  85. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedPubMedCentralGoogle Scholar
  86. Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedGoogle Scholar
  87. Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Phys 166:1186–1199Google Scholar
  88. Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol 12:275–291PubMedGoogle Scholar
  89. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25PubMedPubMedCentralGoogle Scholar
  90. Rossa MM (1999) A luz como fator de regulação da atividade enzimática da nitrato redutase (NR) e superóxido dismutase (SOD) em Gracilariopsis tenuifrons (Rhodophyta). Dissertação de mestrado, Universidade de São Paulo, São PauloGoogle Scholar
  91. Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Phys 146:2020–2035Google Scholar
  92. Santos FC, Guyot R, Do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela ALL (2015) Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosom Res 23:571–582Google Scholar
  93. SAS Institute (2004) SAS/GRAPH 9.1 reference. SAS InstituteGoogle Scholar
  94. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Phys 136:2483–2499Google Scholar
  95. Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development Plant Physiol 171:944–959Google Scholar
  96. Silva FAZ, Azevedo CAV (2013) Versão atualizada do software estatístico Assistat. Versão 7.6 beta <http://www.assistat.com>
  97. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212PubMedGoogle Scholar
  98. Song S, He Z, Huang X, Zhong L, Liu H, Sun G, Chen R (2017) Cloning and characterization of the ammonium transporter genes BaAMT1; 1 and BaAMT1; 3 from Chinese kale. Hortic Environ Biotechnol 58:178–186Google Scholar
  99. Sorgona A, Lupini A, Mercati F, Di Dio L, Sunseri F, Abenavoli MR (2011) Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant Cell Environ 34:1127–1140PubMedGoogle Scholar
  100. Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C (2014) A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol 202:1197–1211PubMedGoogle Scholar
  101. Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49Google Scholar
  102. Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621Google Scholar
  103. Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970PubMedGoogle Scholar
  104. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061PubMedPubMedCentralGoogle Scholar
  105. Straub D, Ludewig U, Neuhäuser B (2014) A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula. Plant Mol Biol 86:485–494PubMedGoogle Scholar
  106. Tong Z, Qu S, Zhang J, Wang F, Tao J, Gao Z, Zhang Z (2012) A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis. Mol Biotechnol 50:229–236PubMedGoogle Scholar
  107. Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S (2012) Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ 35:1137–1155PubMedGoogle Scholar
  108. Valiollahi E, Farsi M, Kakhki AM (2014) Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotech Rep 8:349–356Google Scholar
  109. Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K (2013) TRAPID: an eficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol 14(1):R134PubMedPubMedCentralGoogle Scholar
  110. van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243–256Google Scholar
  111. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12PubMedPubMedCentralGoogle Scholar
  112. Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11:601PubMedPubMedCentralGoogle Scholar
  113. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. P Natl Acad Sci 107:4477–4482Google Scholar
  114. Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA (2013) Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics 14:701PubMedPubMedCentralGoogle Scholar
  115. Vieira LGE, Andrade AC, Colombo CA, Moraes AHDA, Metha Â, Oliveira ACD, Labate CA, Marino CL, Monteiro-Vitorello CB, Monte DC, Giglioti E, Kimura ET, Romano E, Kuramae EE, Lemos EGM, Almeira ERP, Jorge EC, Albuquerque EVS, Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, Lima LM, Camargo LEA, Pereira LFP, Coutinho LL, Lemos MVF, Romano MR, Machado MA, Costa MMC, Sá MFG, Goldman MHS, Ferro MIT, Tinoco MLP, Oliveira MC, Sluys MAV, Shimizu MM, Maluf MP, Eira MTS, Filho OG, Arruda P, Mazzafera P, Mariani PDSC, Oliveira RLBC, Harakava R, Balbao SF, Tsai SM, Mauro SMZ, Santos SN, Siqueira WJ, Costa GGL, Formighieri EF, Carazzolle MF, Pereira GAG (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108Google Scholar
  116. von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14:11Google Scholar
  117. Wallsgrove RM, Lea PJ, Miflin BJ (1979) Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Phys 63:232–236Google Scholar
  118. Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509PubMedPubMedCentralGoogle Scholar
  119. Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013) Elucidation of miRNAs mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8(7):e67423PubMedPubMedCentralGoogle Scholar
  120. Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497PubMedGoogle Scholar
  121. Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, Chen X, Ma W (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940PubMedPubMedCentralGoogle Scholar
  122. Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47PubMedPubMedCentralGoogle Scholar
  123. Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6(11):e28009PubMedPubMedCentralGoogle Scholar
  124. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182PubMedGoogle Scholar
  125. Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2013) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101PubMedGoogle Scholar
  126. Xu ZC, Peters RJ, Weirather J, Luo HM, Liao BS, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961PubMedGoogle Scholar
  127. Yang J, Zhang N, Mi X, Wu L, Ma R, Zhu X, Yao L, Jin X, Si H, Wang D (2014) Identification of miR159s and their target genes and expression analysis under drought stress in potato. Comput Biol Chem 53:204–213Google Scholar
  128. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297PubMedPubMedCentralGoogle Scholar
  129. Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652PubMedPubMedCentralGoogle Scholar
  130. Yuan L, Graff L, Loque D, Kojima S, Tsuchiya YN, Takahashi H, von Wiren N (2009) AtAMT1;4, a affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol 50:13–25Google Scholar
  131. Yuyama PM, Reis Junior O, Ivamoto ST, Domingues DS, Carazzole MF, Pereira GAG, Charmetant P, Leroy T, Pereira LFP (2016) Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Gen Genomics 291:323–336Google Scholar
  132. Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915PubMedPubMedCentralGoogle Scholar
  133. Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7(1):e29669PubMedPubMedCentralGoogle Scholar
  134. Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C (2013) Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot 112:633–642PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tiago Benedito dos Santos
    • 1
    • 2
    Email author
  • João D. M. Soares
    • 1
  • Joni E. Lima
    • 3
    • 4
  • Juliana C. Silva
    • 1
    • 5
  • Suzana T. Ivamoto
    • 1
    • 6
  • Viviane Y. Baba
    • 1
  • Silvia G. H. Souza
    • 7
  • Alan P. R. Lorenzetti
    • 8
  • Alexandre R. Paschoal
    • 5
  • Anderson R. Meda
    • 1
  • Milton Y. Nishiyama Júnior
    • 9
  • Úrsula C. de Oliveira
    • 9
  • João B. Mokochinski
    • 10
  • Romain Guyot
    • 11
  • Inácio L. M. Junqueira-de-Azevedo
    • 9
  • Antônio V. O. Figueira
    • 3
  • Paulo Mazzafera
    • 10
  • Osvaldo R. Júnior
    • 12
  • Luiz G. E. Vieira
    • 2
  • Luiz F. P. Pereira
    • 1
    • 13
  • Douglas S. Domingues
    • 1
    • 6
  1. 1.Laboratório de Biotecnologia VegetalInstituto Agronômico do ParanáLondrinaBrazil
  2. 2.Universidade do Oeste PaulistaPresidente PrudenteBrazil
  3. 3.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  4. 4.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Programa de pós-graduação em BioinformáticaUniversidade Tecnológica Federal do ParanáCornélio ProcópioBrazil
  6. 6.Departamento de Botânica, Instituto de Biociências de Rio ClaroUniversidade Estadual PaulistaRio ClaroBrazil
  7. 7.Laboratório de Biologia MolecularUniversidade ParanaenseUmuaramaBrazil
  8. 8.Programa de Pós-graduação em Genética e Biologia MolecularUniversidade Estadual de LondrinaLondrinaBrazil
  9. 9.Laboratório Especial de Toxinologia AplicadaInstituto ButantanSão PauloBrazil
  10. 10.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  11. 11.IRD, UMR IPME, COFFEEADAPTMontpellier Cedex 5France
  12. 12.Life Sciences Core Facility (LaCTAD)Universidade Estadual de CampinasCampinasBrazil
  13. 13.Embrapa CaféBrasíliaBrazil

Personalised recommendations