Advertisement

Functional & Integrative Genomics

, Volume 18, Issue 6, pp 627–644 | Cite as

Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings

  • Matteo Buti
  • Marianna Pasquariello
  • Domenico Ronga
  • Justyna Anna Milc
  • Nicola Pecchioni
  • Viet The Ho
  • Chiara Pucciariello
  • Pierdomenico Perata
  • Enrico Francia
Original Article

Abstract

Low temperature is a major factor limiting rice growth and yield, and seedling is one of the developmental stages at which sensitivity to chilling stress is higher. Tolerance to chilling is a complex quantitative trait, so one of the most effective approaches to identify genes and pathways involved is to compare the stress-induced expression changes between tolerant and sensitive genotypes. Phenotypic responses to chilling of 13 Japonica cultivars were evaluated, and Thaibonnet and Volano were selected as sensitive and tolerant genotypes, respectively. To thoroughly profile the short-term response of the two cultivars to chilling, RNA-Seq was performed on Thaibonnet and Volano seedlings after 0 (not stressed), 2, and 10 h at 10 °C. Differential expression analysis revealed that the ICE-DREB1/CBF pathway plays a primary role in chilling tolerance, mainly due to some important transcription factors involved (some of which had never been reported before). Moreover, the expression trends of some genes that were radically different between Thaibonnet and Volano (i.e., calcium-dependent protein kinases OsCDPK21 and OsCDPK23, cytochrome P450 monooxygenase CYP76M8, etc.) suggest their involvement in low temperature tolerance too. Density of differentially expressed genes along rice genome was determined and linked to the position of known QTLs: remarkable co-locations were reported, delivering an overview of genomic regions determinant for low temperature response at seedling stage. Our study contributes to a better understanding of the molecular mechanisms underlying rice response to chilling and provides a solid background for development of low temperature-tolerant germplasm.

Keywords

Oryza sativa Chilling tolerance Short-term response RNA-Seq Differentially expressed genes 

Notes

Acknowledgements

Thanks are due to Marco Moretto and Paolo Sonego (Fondazione Edmund Mach, San Michele all’Adige ITALY) for their precious help with RNA-Seq data treatment.

Author contributions

MP, DR, VTH, and CP performed rice plants phenotiping, RNA extractions and RT-qPCR. MB and JAM performed the RNA-Seq analysis. MB wrote the manuscript. EF, NP, and PP conceived the experiment, participated in the interpretation and discussion of results, and contributed to the writing of the paper.

Funding information

This work was supported by Progetto AGER, grant n° 2010-2369—Integrated Genetic And Genomic Approaches For New Italian Rice Breeding Strategies (RISINNOVA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10142_2018_615_MOESM1_ESM.xlsx (10 kb)
Online Resource 1 Primers used for RT-qPCR. (XLSX 9 kb)
10142_2018_615_Fig7_ESM.png (32 kb)
Online Resource 2

Statistical analysis of electrolytic leakage (EL%) measured in not stressed plants (ctrl) and 2, 7, 14 days after chilling exposure for Experiment 1. Dashed lines inside boxes represent the average value for the 13 cultivars. Significant differences were derived from unbalanced ANOVA and reported on the figure (n.s., not significant; ***, p < 0.001). (PNG 32 kb)

10142_2018_615_MOESM2_ESM.tif (87 kb)
High Resolution Image (TIF 86 kb)
10142_2018_615_MOESM3_ESM.xlsx (11 kb)
Online Resource 3 Size (bp) and normalization factors (calculated with EdgeR according to each library size) for the 18 RNA-Seq libraries. (XLSX 11 kb)
10142_2018_615_MOESM4_ESM.xlsx (6.2 mb)
Online Resource 4 Normalized reads counts for active genes in Thaibonnet and Volano RNA libraries. (XLSX 6378 kb)
10142_2018_615_MOESM5_ESM.png (29 kb)
Online Resource 5 Multi-dimensional scaling (MDS) plots for Thaibonnet (a) and Volano (b) RNA libraries generated with EdgeR to measure gene expression differences (three biological replicates for 0, 2 and 10 h of chilling stress for each genotype). (PNG 29 kb)
10142_2018_615_MOESM6_ESM.xlsx (10.5 mb)
Online Resource 6 EdgeR differential expression analysis results for all the active genes of Thaibonnet and Volano rice genotypes for 2 and 10 h of chilling stress compared to control samples. (XLSX 10721 kb)
10142_2018_615_MOESM7_ESM.xlsx (1012 kb)
Online Resource 7 List of the rice genes that are differentially expressed in at least one of the four stress combinations (Thaibonnet/Volano; 2/10 h of stress) compared to controls. Position on the genome, description and log2 Fold Change resulting from EdgeR analysis are reported for each gene. Empty cells on log2FC columns mean that the gene is not regulated on the correspondent RNA-Seq set. (XLSX 1011 kb)
10142_2018_615_Fig8_ESM.png (296 kb)
Online Resource 8

Box plots representing the log2(Fold Change) statistical distribution for DEGs of Thaibonnet (red) and Volano (blue), clustered by their expression trend: (a) genes up-regulated after 2 and 10 h of stress; (b) genes up-regulated only after 2 h of stress; (c) genes up-regulated only after 10 h of stress; (d) genes down-regulated after 2 and 10 h of stress; (e) genes down-regulated only after 2 h of stress; (f) genes down-regulated only after 10 h of stress. Whiskers above and below the boxes indicate the 10th and the 90th percentiles. (PNG 296 kb)

10142_2018_615_MOESM8_ESM.tif (66 kb)
High Resolution Image (TIF 65 kb)
10142_2018_615_MOESM9_ESM.xlsx (18 kb)
Online Resource 9 List of QTLs found in Gramene and in bibliography. For each QTL, relative trait, linkage group (LG), genetic position in cM (where available), associated markers, physical position in Japonica rice genome in bp, number of genes included in the QTL that are differentially expressed in at least one experiment (Thaibonnet/Volano and 2/10 h) are reported. (XLSX 17 kb)
10142_2018_615_MOESM10_ESM.xlsx (1.2 mb)
Online Resource 10 GO-enrichment analysis results for DEGs of Thaibonnet and Volano rice genotypes for 2 and 10 h of chilling stress. For each GO term, over- and under-represented p-value, number of DE genes (numDEInCat), total genes (numInCat), ontology and term name are included. (XLSX 1190 kb)
10142_2018_615_MOESM11_ESM.xlsx (41 kb)
Online Resource 11 List of the GO terms enriched (p < 0.05) in at least one of the 4 analyzed DEGs sets (Thaibonnet/Volano and 2/10 h). For each GO term, p-value for each DEGs set, ontology and GO term name are reported. Empty cells on p-value columns means that the GO term is not significantly enriched in the correspondent DEGs set. (XLSX 40 kb)
10142_2018_615_MOESM12_ESM.png (80 kb)
Online Resource 12 MapMan regulation overview of the genes that are up-regulated at 2 h in Volano, but only at 10 h in Thaibonnet. Genes are binned to MapMan functional categories and the values are represented as the log2-transformed values. Blue squares indicates up-regulated genes. (PNG 79 kb)
10142_2018_615_MOESM13_ESM.xls (37 kb)
Online Resource 13 Genes binned by MapMan to “Transcription Factor” among genes that are up-regulated at 2 h and 10 h in Volano, but only at 10 h in Thaibonnet. (XLS 37 kb)

References

  1. Akhtar M, Jaiswal A, Taj G et al (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395.  https://doi.org/10.1007/s12041-012-0201-3 CrossRefGoogle Scholar
  2. Andaya V, Mackill D (2003) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet 106:1084–1090.  https://doi.org/10.1007/s00122-002-1126-7 CrossRefPubMedGoogle Scholar
  3. Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475.  https://doi.org/10.1007/s00122-006-0311-5 CrossRefPubMedGoogle Scholar
  4. Andaya VC, Tai TH (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed 20:349–358.  https://doi.org/10.1007/s11032-007-9096-8 CrossRefGoogle Scholar
  5. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169.  https://doi.org/10.1093/bioinformatics/btu638 CrossRefGoogle Scholar
  6. Andrews S (2010) Babraham Bioinformatics—FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  7. Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628.  https://doi.org/10.1105/tpc.010454 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191.  https://doi.org/10.1007/s11103-010-9717-1 CrossRefPubMedGoogle Scholar
  9. Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821.  https://doi.org/10.4161/psb.20351 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boudsocq M, Laurie C (2005) Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194.  https://doi.org/10.1104/pp.105.061275 CrossRefGoogle Scholar
  12. Caffagni A, Pecchioni N, Francia E, Pagani D, Milc J (2014) Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biol Plant 58:283–295.  https://doi.org/10.1007/s10535-014-0403-z CrossRefGoogle Scholar
  13. Chander S, Almeida DM, Serra TS, et al (2018) OsICE1 transcription factor improves photosynthetic performance and reduces grain losses in rice plants subjected to drought. Environ Exp Bot in press:. doi:  https://doi.org/10.1016/j.envexpbot.2018.02.004 CrossRefGoogle Scholar
  14. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198.  https://doi.org/10.1007/s10529-008-9811-5 CrossRefGoogle Scholar
  15. Cheng C, Yun K-Y, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun S, de los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175.  https://doi.org/10.1186/1471-2164-8-175 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chinnusamy V, Ohta M, Kanrar S, Lee B-H, Hong X, Agarwl M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in arabidopsis. Genes Dev 17:1043–1054.  https://doi.org/10.1101/gad.1077503 CrossRefGoogle Scholar
  17. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451.  https://doi.org/10.1016/j.tplants.2007.07.002 CrossRefPubMedGoogle Scholar
  18. Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964.  https://doi.org/10.1104/pp.107.115691 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  20. da Maia LC, Cadore PRB, Benitez LC, Danielowski R, Braga EJB, Fagundes PRR, Magalhães AM, Costa de Oliveira A (2016) Transcriptome profiling of rice seedlings under cold stress. Funct Plant Biol 44:419–430.  https://doi.org/10.1071/FP16239 CrossRefGoogle Scholar
  21. Dametto A, Buffon G, Blasi ÉA (2015) Ubiquitination pathway as a target to develop abiotic stress tolerance in rice. Plant Signal … 2324:. doi:  https://doi.org/10.1080/15592324.2015.1057369 CrossRefGoogle Scholar
  22. do Amaral MN, Arge LWP, Benitez LC, Danielowski R, Silveira SFS, Farias DR, de Oliveira AC, da Maia LC, Braga EJB (2016) Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomics 16:567–579.  https://doi.org/10.1007/s10142-016-0507-y CrossRefPubMedGoogle Scholar
  23. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. 21:972–984. doi:  https://doi.org/10.1105/tpc.108.063958 CrossRefGoogle Scholar
  24. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397.  https://doi.org/10.3389/fpls.2013.00397 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold responsive gene expression. Plant J 33:751–763CrossRefGoogle Scholar
  26. Ente Nazionale Risi (2017) Superfici investite a riso 2016 - dati espressi in ettari. http://www.enterisi.it/upload/enterisi/bilanci/St1bis-1617_15916_366.pdf
  27. FAO (2015) FAO Statistical Pocketbook 2015Google Scholar
  28. Fowler DB (2008) Cold acclimation threshold induction temperatures in cereals. 48:1147–1154. doi:  https://doi.org/10.2135/cropsci2007.10.0581 CrossRefGoogle Scholar
  29. Fowler DB, Limin AE (2004) Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. Ann Bot 94:717–724.  https://doi.org/10.1093/aob/mch196 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Francia E, Pecchioni N, Policriti A, Scalabrin S (2015) CNV and structural variation in plants: prospects of NGS approaches. In: Advances in the understanding of biological sciences using next generation sequencing (NGS) approaches. Springer International Publishing, Cham, pp 211–232CrossRefGoogle Scholar
  31. Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, Terzi V, Pecchioni N (2016) Copy number variation at the HvCBF4 HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol 92:161–175.  https://doi.org/10.1007/s11103-016-0505-4 CrossRefPubMedGoogle Scholar
  32. Guttikonda SK, Valliyodan B, Neelakandan AK, Tran LSP, Kumar R, Quach TN, Voothuluru P, Gutierrez-Gonzalez JJ, Aldrich DL, Pallardy SG, Sharp RE, Ho THD, Nguyen HT (2014) Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean. Mol Biol Rep 41:7995–8008.  https://doi.org/10.1007/s11033-014-3695-3 CrossRefPubMedGoogle Scholar
  33. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648.  https://doi.org/10.1104/pp.006478 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc Lond B Biol Sci 368.  https://doi.org/10.1098/rstb.2012.0426 CrossRefGoogle Scholar
  35. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306.  https://doi.org/10.1074/jbc.M111.316364 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hossain MA, Il CJ, Han M et al (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520.  https://doi.org/10.1016/j.jplph.2010.05.008 CrossRefGoogle Scholar
  37. IRRI (2002) Standard evaluation system for rice. IRRI, The PhilippinesGoogle Scholar
  38. Ji SL, Jiang L, Wang YH et al (2008) QTL and epistasis for low temperature Germinability in Rice. Acta Agron Sin 34:551–556.  https://doi.org/10.1016/S1875-2780(08)60021-8 CrossRefGoogle Scholar
  39. Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282.  https://doi.org/10.1111/j.1439-037X.2005.00153.x CrossRefGoogle Scholar
  40. Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462.  https://doi.org/10.1007/s11103-007-9284-2 CrossRefGoogle Scholar
  41. Kim S-J, Lee S-C, Hong SK, An K, An G, Kim SR (2009) Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cell 27:449–458.  https://doi.org/10.1007/s10059-009-0055-6 CrossRefGoogle Scholar
  42. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36.  https://doi.org/10.1186/gb-2013-14-4-r36 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kim S-M, Suh J-P, Lee C-K, Lee JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Gen Genomics 289:333–343.  https://doi.org/10.1007/s00438-014-0813-9 CrossRefGoogle Scholar
  44. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291.  https://doi.org/10.1093/bioinformatics/btm091 CrossRefGoogle Scholar
  45. Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Gen Genomics 284:45–54.  https://doi.org/10.1007/s00438-010-0548-1 CrossRefGoogle Scholar
  46. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118.  https://doi.org/10.1371/journal.pcbi.1003118 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu Y, He C (2017) A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 11:192–204.  https://doi.org/10.1016/j.redox.2016.12.009 CrossRefPubMedGoogle Scholar
  48. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221.  https://doi.org/10.1016/j.cell.2015.01.046 CrossRefPubMedGoogle Scholar
  49. Mackill DJ, Lei X (1997) Genetic variation for traits related to temperate adaptation of Rice cultivars. Crop Sci 37:1340.  https://doi.org/10.2135/cropsci1997.0011183X003700040051x CrossRefGoogle Scholar
  50. Mao D, Chen C (2012) Colinearity and similar expression pattern of Rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One 7:e47275.  https://doi.org/10.1371/journal.pone.0047275 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mao D, Yu L, Chen D, Li L, Zhu Y, Xiao Y, Zhang D, Chen C (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128:1359–1371.  https://doi.org/10.1007/s00122-015-2511-3 CrossRefPubMedGoogle Scholar
  52. Maruyama K, Urano K, Yoshiwara K, et al (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. 164:1759–1771. doi:  https://doi.org/10.1104/pp.113.231720 CrossRefGoogle Scholar
  53. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337.  https://doi.org/10.3390/ijms14035312 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mizuno H, Kawahara Y, Wu J, Katayose Y, Kanamori H, Ikawa H, Itoh T, Sasaki T, Matsumoto T (2011) Asymmetric distribution of gene expression in the Centromeric region of Rice chromosome 5. Front Plant Sci 2:1–12.  https://doi.org/10.3389/fpls.2011.00016 CrossRefGoogle Scholar
  55. Munné-Bosch S, Müller M (2013) Hormonal cross-talk in plant development and stress responses. Front Plant Sci 4:1–2.  https://doi.org/10.3389/fpls.2013.00529 CrossRefGoogle Scholar
  56. Nakamura J, Yuasa T, Huong TT, Harano K, Tanaka S, Iwata T, Phan T, Iwaya M (2011) Rice homologs of inducer of CBF expression (OsiCE) are involved in cold acclimation. Plant Biotechnol 28:303–309.  https://doi.org/10.5511/plantbiotechnology.11.0421a CrossRefGoogle Scholar
  57. Nakashima K, Tran L-SP, Van Nguyen D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630.  https://doi.org/10.1111/j.1365-313X.2007.03168.x CrossRefGoogle Scholar
  58. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103.  https://doi.org/10.1016/j.bbagrm.2011.10.005 CrossRefGoogle Scholar
  59. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170.  https://doi.org/10.3389/fpls.2014.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P (2012) SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J 72:282–293.  https://doi.org/10.1111/j.1365-313X.2012.05078.x CrossRefPubMedGoogle Scholar
  61. Pan XW, Li YC, Li XX et al (2013) Differential regulatory mechanisms of CBF regulon between Nipponbare (japonica) and 93-11 (indica) during cold acclimation. Rice Sci 20:165–172.  https://doi.org/10.1016/S1672-6308(13)60121-3 CrossRefGoogle Scholar
  62. Payne R (2014) Regression, nonlinear and generalized linear models 88Google Scholar
  63. Pecchioni N, Kosová K, Vítámvás P, Prášil IT, Milc JA, Francia E, Gulyás Z, Kocsy G, Galiba G (2014) Genomics of low-temperature tolerance for an increased sustainability of wheat and barley production. In: Genomics of plant genetic resources. Springer Netherlands, Dordrecht, pp 149–183CrossRefGoogle Scholar
  64. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefGoogle Scholar
  65. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327.  https://doi.org/10.1046/j.1365-313X.2000.00787.x CrossRefGoogle Scholar
  66. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406.  https://doi.org/10.1007/s00299-010-0985-7 CrossRefPubMedGoogle Scholar
  67. Shen C, Li D, He R, Fang Z, Xia Y, Gao J, Shen H, Cao M (2014) Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. J Plant Biol 57:337–348.  https://doi.org/10.1007/s12374-014-0183-1 CrossRefGoogle Scholar
  68. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203.  https://doi.org/10.4161/psb.6.2.14701 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Song S-Y, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345.  https://doi.org/10.1007/s00425-011-1403-2 CrossRefGoogle Scholar
  70. Suarez-Rodriguez MC, Petersen M, Mundy J et al (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649.  https://doi.org/10.1146/annurev-arplant-042809-112252 CrossRefGoogle Scholar
  71. Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D'Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:D1133–D1140.  https://doi.org/10.1093/nar/gkv1179 CrossRefPubMedGoogle Scholar
  72. Tondelli A, Francia E, Barabaschi D, Pasquariello M, Pecchioni N (2011) Inside the CBF locus in Poaceae. Plant Sci 180:39–45.  https://doi.org/10.1016/j.plantsci.2010.08.012 CrossRefPubMedGoogle Scholar
  73. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115.  https://doi.org/10.1093/nar/gks596 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Usadel B, Poree F, Nagel A et al (2009) A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229.  https://doi.org/10.1111/j.1365-3040.2009.01978.x CrossRefGoogle Scholar
  75. Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y (2013) OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep 32:1075–1084.  https://doi.org/10.1007/s00299-013-1389-2 CrossRefPubMedGoogle Scholar
  76. Wang D, Liu J, Li C et al (2016) Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice 9:61.  https://doi.org/10.1186/s12284-016-0133-2 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang Y, Jiang Q, Liu J, Zeng W, Zeng Y, Li R, Luo J (2017) Comparative transcriptome profiling of chilling tolerant rice chromosome segment substitution line in response to early chilling stress. Genes Genomics 39:127–141.  https://doi.org/10.1007/s13258-016-0471-x CrossRefGoogle Scholar
  78. Xiao N, Huang W, Li A, Gao Y, Li YH, Pan CH, Ji H, Zhang XX, Dai Y, Dai ZY, Chen JM (2015) Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings. Theor Appl Genet 128:173–185.  https://doi.org/10.1007/s00122-014-2420-x CrossRefPubMedGoogle Scholar
  79. Xie G, Kato H, Sasaki K, Imai R (2009) A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett 583:2734–2738.  https://doi.org/10.1016/j.febslet.2009.07.057 CrossRefPubMedGoogle Scholar
  80. Xie G, Kato H, Imai R (2012) Biochemical identification of the OsMKK6–OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443:95–102.  https://doi.org/10.1042/BJ20111792 CrossRefGoogle Scholar
  81. Yang Q-S, Gao J, He W-D, Dou TX, Ding LJ, Wu JH, Li CY, Peng XX, Zhang S, Yi GJ (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16:446.  https://doi.org/10.1186/s12864-015-1551-z CrossRefPubMedPubMedCentralGoogle Scholar
  82. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14.  https://doi.org/10.1186/gb-2010-11-2-r14 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92.  https://doi.org/10.1126/science.1068037 CrossRefGoogle Scholar
  84. Yun K-Y, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16.  https://doi.org/10.1186/1471-2229-10-16 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One 7:e43274.  https://doi.org/10.1371/journal.pone.0043274 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhang Q, Jiang N, Wang G-L, Hong Y, Wang Z (2013) Advances in understanding cold sensing and the cold-responsive network in Rice. Adv Crop Sci Tech 1:1–8.  https://doi.org/10.4172/2329-8863.1000104
  87. Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice (N Y) 7:24.  https://doi.org/10.1186/s12284-014-0024-3 CrossRefGoogle Scholar
  88. Zhao X-Q, Wang W-S, Zhang F, Zhang T, Zhao W, Fu BY, Li ZK (2013) Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). Rice (N Y) 6:23.  https://doi.org/10.1186/1939-8433-6-23 CrossRefGoogle Scholar
  89. Zhao C, Wang P, Si T, Hsu CC, Wang L, Zayed O, Yu Z, Zhu Y, Dong J, Tao WA, Zhu JK (2017) MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell 43:618–629.e5.  https://doi.org/10.1016/j.devcel.2017.09.024 CrossRefPubMedGoogle Scholar
  90. Zhou MQ, Shen C, Wu LH, et al (2011) CBF-dependent signaling pathway: A key responder to low temperature stress in plants. 31:186–192. doi:  https://doi.org/10.3109/07388551.2010.505910 CrossRefGoogle Scholar
  91. Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295.  https://doi.org/10.1016/j.pbi.2007.04.010 CrossRefPubMedGoogle Scholar
  92. Zhu Y, Chen K, Mi X, Chen T, Ali J, Ye G, Xu J, Li Z (2015) Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in Rice. PLoS One 10:e0145704.  https://doi.org/10.1371/journal.pone.0145704 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matteo Buti
    • 1
  • Marianna Pasquariello
    • 2
  • Domenico Ronga
    • 1
  • Justyna Anna Milc
    • 1
    • 3
  • Nicola Pecchioni
    • 3
    • 4
  • Viet The Ho
    • 5
    • 6
  • Chiara Pucciariello
    • 5
  • Pierdomenico Perata
    • 5
  • Enrico Francia
    • 1
    • 3
  1. 1.BIOGEST-SITEIAUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.Department of Crop GeneticsJohn Innes CentreNorwichUK
  3. 3.Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  4. 4.Cereal Research CentreCouncil for Agricultural Research and EconomicsFoggiaItaly
  5. 5.PlantLabScuola Superiore Sant’AnnaPisaItaly
  6. 6.Ho Chi Minh City University of Food IndustryHo Chi MinhVietnam

Personalised recommendations