Functional & Integrative Genomics

, Volume 18, Issue 1, pp 89–99 | Cite as

CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome

  • Navneet Kaur
  • Anshu Alok
  • Shivani
  • Navjot Kaur
  • Pankaj Pandey
  • Praveen Awasthi
  • Siddharth TiwariEmail author
Original Article


The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been reported for precise genome modification in many plants. In the current study, we demonstrate a successful mutation in phytoene desaturase (RAS-PDS) of banana cv. Rasthali using the CRISPR/Cas9 system. Two PDS genes were isolated from Rasthali (RAS-PDS1 and RAS-PDS2), and their protein sequence analysis confirmed that both PDS comprises conserved motifs for enzyme activity. Phylogenetic analysis of RAS-PDS1 and RAS-PDS2 revealed a close evolutionary relationship with other monocot species. The tissue-specific expression profile of RAS-PDS1 and RAS-PDS2 in Rasthali suggested differential regulation of the genes. A single 19-bp guide RNA (gRNA) was designed to target the conserved region of these two RAS-PDS and transformed with Cas9 in embryogenic cell suspension (ECS) cultures of cv. Rasthali. Complete albino and variegated phenotype were observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the indels with 59% mutation frequency in RAS-PDS, suggesting activation of the non-homologous end-joining (NHEJ) pathway. The majority of mutations were either insertion (1–5) or deletion (1–4) of nucleotides near to protospacer adjacent motif (PAM). These mutations have created stop codons in RAS-PDS sequences which suggest premature termination of RAS-PDS protein synthesis. The decreased chlorophyll and total carotenoid contents were detected in mutant lines that revealed the functional disruption of both RAS-PDS genes. Our results demonstrate that genome editing through CRISPR/Cas9 can be applied as an efficient tool for banana genome modification.


Banana transformation Carotenoid Embryonic cell suspension Genome editing Mutation 



The authors are thankful to the Biotechnology Industry Research Assistance Council (BIRAC) for the banana biofortification project grant to ST. S and NK are thankful to the Department of Biotechnology, Panjab University, Chandigarh, for Ph.D. registration. The authors would like to acknowledge the DBT-eLibrary Consortium (Del-CON) for providing access to online journals.

Funding information

The research was funded by National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10142_2017_577_Fig8_ESM.gif (329 kb)
Fig. S1

Different in-vitro stages of Rasthali. (a) Somatic embryos emerged on embryogenic callus. (b) Embryonic Cell Suspension (ECS). (c) Microscopic view of ECS showing dense cytoplasm and spherical structure. (d) Transformed ECS on embryo regeneration selection medium. (GIF 328 kb)

10142_2017_577_MOESM1_ESM.tif (7.4 mb)
High Resolution Image (TIFF 7583 kb)
10142_2017_577_Fig9_ESM.gif (121 kb)
Fig. S2

Gel image of amplified ~1468 bp fragment from genomic DNA of transformed and control plants. Lines (L-8 to L-64) represent putative mutant plants, C is control (empty vector plant) and N represent negative control (non-transgenic plant). (GIF 121 kb)

10142_2017_577_MOESM2_ESM.tif (2.8 mb)
High Resolution Image (TIFF 2832 kb)
10142_2017_577_Fig10_ESM.gif (121 kb)
Fig. S3

Gel image of amplified 311 bp fragment from genomic DNA of transformed and control plants. Lines (L-8 to L-64) represent putative mutant plants, C is control (empty vector plant) and N represents negative control (non-template control). The ladder represents 1 kb ladder of GeneRular. (GIF 121 kb)

10142_2017_577_MOESM3_ESM.tif (2.4 mb)
High Resolution Image (TIFF 2484 kb)
10142_2017_577_Fig11_ESM.gif (100 kb)
Fig. S4

Chromatogram. With respect to control (a), results show deletion (b) and insertion (c, d) in the sequence. Red marked nucleotides show mutation. In control sequence, insertions are represented with capital letters (Lines 16 and 41) and deletions are represented by small letters (Line 08). (GIF 99.5 kb)

10142_2017_577_MOESM4_ESM.tif (4.5 mb)
High Resolution Image (TIFF 4646 kb)
10142_2017_577_Fig12_ESM.gif (504 kb)
Fig. S5

Editing in different RAS-PDS sequence leads to the formation of the stop codon. (GIF 503 kb)

10142_2017_577_MOESM5_ESM.tif (22.9 mb)
High Resolution Image (TIFF 23419 kb)
10142_2017_577_Fig13_ESM.gif (35 kb)
Fig. S6

Absorption spectra at 470, 653 and 665 for control (empty vector plant) and mutant lines. (GIF 34.8 kb)

10142_2017_577_MOESM6_ESM.tif (1.4 mb)
High Resolution Image (TIFF 1385 kb)
10142_2017_577_MOESM7_ESM.docx (16 kb)
Table S1 (DOCX 15.5 kb)


  1. Albadri S, Del Bene F, Revenu C (2017) Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods (San Diego, Calif.) 121–122:77–85CrossRefGoogle Scholar
  2. Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnol J 14(1):195–205. CrossRefPubMedGoogle Scholar
  3. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15(1):529–539. CrossRefPubMedGoogle Scholar
  5. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. CrossRefPubMedGoogle Scholar
  6. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiol 166(3):1292–1297. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10(12):e0144591. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10(8):e0136064. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11(1):57–68. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274. CrossRefPubMedGoogle Scholar
  11. Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):232. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268. CrossRefPubMedGoogle Scholar
  13. Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13(7):1002–1010. CrossRefPubMedGoogle Scholar
  14. Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L (2017) CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 16:1–4Google Scholar
  15. Côte FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, Escalant JV (1996) Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand Nain. Physiol Plant 97(2):285–290. CrossRefGoogle Scholar
  16. D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217. CrossRefPubMedGoogle Scholar
  17. Dash PK, Rai R (2016) Translating the “banana genome” to delineate stress resistance, dwarfing, parthenocarpy and mechanisms of fruit ripening. Front Plant Sci 7:1543. PubMedPubMedCentralGoogle Scholar
  18. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97. CrossRefPubMedGoogle Scholar
  19. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217Google Scholar
  20. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111(12):4632–4637. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1-2):99–110. CrossRefPubMedGoogle Scholar
  23. Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79(4):597–606. CrossRefPubMedGoogle Scholar
  24. Hou X, Rivers J, León P, McQuinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21(9):792–803. CrossRefPubMedGoogle Scholar
  25. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum, and rice. Nucleic Acids Res 41(20):e188. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaur N, Pandey A, Shivani, Kumar P, Pandey P, Kesarwani AK, Mantri SS, Awasthi P, Tiwari S (2017) Regulation of banana phytoene synthase (MaPSY) expression, characterization and their modulation under various abiotic stress conditions. Front Plant Sci 8:462Google Scholar
  29. Kaur N, Pandey A, Tiwari S (2016) Provitamin A enrichment for tackling malnutrition. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore, pp 277–299. CrossRefGoogle Scholar
  30. Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14(3):239–252. CrossRefGoogle Scholar
  31. Kim D, Alptekin B, Budak H (2017) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 16:1–1Google Scholar
  32. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013a) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature. Biotechnol 31:688–691Google Scholar
  33. Li M, Gan Z, Cui Y, Shi C, Shi X (2013b) Structure and function characterization of the phytoene desaturase related to the lutein biosynthesis in Chlorella protothecoides CS-41. Mol Biol Rep 40(4):3351–3361. CrossRefPubMedGoogle Scholar
  34. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261.
  36. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68.
  37. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. CrossRefPubMedGoogle Scholar
  38. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904Google Scholar
  39. Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 6:371–374CrossRefGoogle Scholar
  40. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, LJ Q (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–52.9. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnol 31:691–693CrossRefGoogle Scholar
  43. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6Google Scholar
  44. Nogué F, Mara K, Collonnier C, Casacuberta JM (2016) Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Rep 357:1475–1486CrossRefGoogle Scholar
  45. Noman A, Aqeel M, He S (2016) CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. Front Plant Sci 7:1740Google Scholar
  46. Osakabe Y, Osakabe K (2014) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400. CrossRefPubMedGoogle Scholar
  47. Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6(1):24765. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pecker I, Chamovitz D, Linden H, Sandmann G, Hirschberg J (1992) A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc Natl Acad Sci U S A 89(11):4962–4966. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants throughCRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519Google Scholar
  50. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C, Lebot V (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A 108(28):11311–11318. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, LJ Q (2007) Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17(5):471–482. CrossRefPubMedGoogle Scholar
  52. Ronald PC (2014) Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS Biol 126:e1001878CrossRefGoogle Scholar
  53. Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158Google Scholar
  54. Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30(9):1041–1051. CrossRefPubMedGoogle Scholar
  55. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2016) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216:682–698CrossRefGoogle Scholar
  56. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. CrossRefPubMedGoogle Scholar
  57. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. CrossRefPubMedGoogle Scholar
  58. Shivani AP, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S (2017) Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS One 12(8):e0182242. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 4:63–69Google Scholar
  60. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342Google Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tian L (2015) Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development. Front Plant Sci 6:790Google Scholar
  63. Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36(3):399–406. CrossRefPubMedGoogle Scholar
  64. Tingting L, Di F, Lingyu R, Yuanzhong J, Rui L, Keming L (2015) Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus. Yi Chuan 37:1044–1052Google Scholar
  65. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12):2233–2238. CrossRefGoogle Scholar
  66. Upadhyay SK, Sharma S (2014) SSFinder: high throughput CRISPR-Cas target sites prediction tool. BioMed Res IntGoogle Scholar
  67. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34(9):1473–1476. CrossRefPubMedGoogle Scholar
  68. Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167(3):751–760. CrossRefPubMedGoogle Scholar
  69. Wang W, Akhunova A, Chao S, Akhunov E (2016) Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv 1:051342Google Scholar
  70. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeo alleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature. Biotechnol 32:947–951Google Scholar
  71. Wolt JD, Wang K, Sashital D, Lawrence-Dill CJ (2016a) Achieving plant CRISPR targeting that limits off-target effects. Plant Genome 9Google Scholar
  72. Wolt JD, Wang K, Yang B (2016b) The regulatory status of genome-edited crops. Plant Biotechnol J 14(2):510–518. CrossRefPubMedGoogle Scholar
  73. Wolter F, Puchta H (2017) Knocking out consumer concerns and regulator’s rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol 18(1):43. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Xie K, Minkenberg B, Yang Y (2014) Targeted gene mutation in rice using a CRISPR-Cas9 system. Bio Protoc 4:e1225CrossRefGoogle Scholar
  75. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48Google Scholar
  76. Yu FE, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30(3):350–365. CrossRefPubMedGoogle Scholar
  77. Yu Q, Feilke K, Krieger-Liszkay A, Beyer P (2014) Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa). Biochim Biophys Acta Bioenerg 1837(8):1284–1292. CrossRefGoogle Scholar
  78. Zhang B, Yang X, Yang C, Li M, Guo Y (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6(1):20315. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications, and challenges. Hum Mol Gen 23(R1):R40–R46. CrossRefPubMedGoogle Scholar
  80. Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the out crossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208(2):298–301. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.National Agri-Food Biotechnology Institute (NABI), Department of BiotechnologyMinistry of Science and Technology (Government of India)MohaliIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations