Functional & Integrative Genomics

, Volume 17, Issue 6, pp 667–685 | Cite as

High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis

  • Stuart J. Lucas
  • Ayten Salantur
  • Selami Yazar
  • Hikmet Budak
Original Article


Durum wheat (Triticum turgidum var. durum Desf.) is a major world crop that is grown primarily in areas of the world that experience periodic drought, and therefore, breeding climate-resilient durum wheat is a priority. High-throughput single nucleotide polymorphism (SNP) genotyping techniques have greatly increased the power of linkage and association mapping analyses for bread wheat, but as yet there is no durum wheat-specific platform available. In this study, we evaluate the new 384HT Wheat Breeders Array for its usefulness in tetraploid wheat breeding by genotyping a breeding population of F6 hybrids, derived from multiple crosses between T. durum cultivars and wild and cultivated emmer wheat accessions. Using a combined linkage and association mapping approach, we generated a genetic map including 1345 SNP markers, and identified markers linked to 6 QTLs for coleoptile length (2), heading date (1), anthocyanin accumulation (1) and osmotic stress tolerance (2). We also developed a straightforward approach for combining genetic data from multiple families of limited size that will be useful for evaluating and mapping pre-existing breeding material.


Triticum durum SNP genotyping Linkage analysis Association mapping Osmotic stress tolerance Wheat wild relatives 



This work was supported by the 1003 Primary Subjects R&D Funding Program of TÜBİTAK (The Scientific and Technological Research Council of Turkey, Grant no: 113O116) and by the General Directorate of Agriculture Research and Policy, Republic of Turkey Ministry of Food, Agriculture and Livestock (Grant no: TAGEM/TA/12/03/01/001). The authors thank İpek Özdemir for technical assistance with DNA isolation. We also thank the Wheat Improvement Strategic Programme (WISP) for designing the SNPs used on the Axiom array and making the marker information publicly available.

Supplementary material

10142_2017_563_MOESM1_ESM.jpg (159 kb)
Figure S1 (JPEG 159 kb)
10142_2017_563_MOESM2_ESM.jpg (4.7 mb)
Figure S2 (JPEG 4779 kb)
10142_2017_563_MOESM3_ESM.jpg (1.5 mb)
Figure S3 (JPEG 1488 kb)
10142_2017_563_MOESM4_ESM.jpg (3.7 mb)
Figure S4 (JPEG 3780 kb)
10142_2017_563_MOESM5_ESM.xlsx (29 kb)
Table S1 (XLSX 28 kb)
10142_2017_563_MOESM6_ESM.xlsx (52 kb)
Table S2 (XLSX 51 kb)
10142_2017_563_MOESM7_ESM.xlsx (60 kb)
Table S3 (XLSX 60 kb)


  1. Akpinar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 2013:361921Google Scholar
  2. Akpinar BA, Lucas SJ, Vrána J, Doležel J, Budak H (2014) Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol J 13:740–752Google Scholar
  3. Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H (2015a) The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 16:453CrossRefPubMedPubMedCentralGoogle Scholar
  4. Akpinar BA, Yuce M, Lucas S, Vrána J, Burešová V, Doležel J, Budak H (2015b) Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci Rep 5:10763CrossRefPubMedGoogle Scholar
  5. Akpinar BA, Lucas SJ, Budak H (2017) A large scale chromosome-specific SNP discovery guideline. Functional and Integrative Genomics 17(1):97–105CrossRefPubMedGoogle Scholar
  6. Allen AM, Gary L A Barker, Paul Wilkinson, Amanda Burridge, Mark Winfield, Jane Coghill, Cristobal Uauy, et al. (2012) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in Hexaploid wheat (Triticum aestivum L.) Plant Biotechnol J:1–17. doi: 10.1111/pbi.12009.
  7. Araus JL, Villegas D, Aparicio N, del Moral LFG, El Hani S, Rharrabti Y, Ferrio JP, Royo C (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43(1):170–180CrossRefGoogle Scholar
  8. Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome / National Research Council Canada = Genome / Conseil National de Recherches Canada 50(10):907–926. doi: 10.1139/G07-072 CrossRefGoogle Scholar
  9. Bajgain P, Rouse MN, Bulli P, Bhavani S, Gordon T, Wanyera R, Njau PN, Legesse W, Anderson JA, Pumphrey MO (2015) Association mapping of north American Spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC Plant Biol 15:249. doi: 10.1186/s12870-015-0628-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bérard A, Paslier MCL, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum Spp.) Plant Biotechnol J 7(4):364–374. doi: 10.1111/j.1467-7652.2009.00404.x CrossRefPubMedGoogle Scholar
  11. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. doi: 10.1093/bioinformatics/btm308 CrossRefPubMedGoogle Scholar
  12. Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710. doi: 10.1038/nature11650 Nature Publishing Group CrossRefPubMedPubMedCentralGoogle Scholar
  13. Budak H, Akpinar BA, Unver T, Turktas M (2013a) Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol 83:89–103CrossRefPubMedGoogle Scholar
  14. Budak H, Kantar M, Kurtoglu KY (2013b) Drought tolerance in modern and wild wheat. ScientificWorldJournal 2013:548246CrossRefPubMedPubMedCentralGoogle Scholar
  15. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1–13CrossRefGoogle Scholar
  16. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi: 10.1186/1471-2105-10-421 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Canè MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34(4):1629–1645. doi: 10.1007/s11032-014-0177-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 27(March):1–5. doi: 10.1038/NCLIMATE2153 Google Scholar
  19. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21(8):1703–1704. doi: 10.1093/bioinformatics/bti222 CrossRefPubMedGoogle Scholar
  20. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) ‘perfect’ markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105(6–7):1038–1042. doi: 10.1007/s00122-002-1048-4 PubMedGoogle Scholar
  21. Endelman JB, Jannink J-L, Holley RW (2012) Shrinkage estimation of the realized relationship matrix. G3:Genes, Genomes, Genetics 2:1405–1413. doi: 10.1534/g3.112.004259 CrossRefGoogle Scholar
  22. Ergen NZ, Budak H (2009) Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32(3):220–236. doi: 10.1111/j.1365-3040.2008.01915.x Blackwell Publishing Ltd CrossRefPubMedGoogle Scholar
  23. Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396CrossRefPubMedGoogle Scholar
  24. Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C et al (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 198(4):1717–1734. doi: 10.1534/genetics.114.169367 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crop Res 33(4):399–409. doi: 10.1016/0378-4290(93)90161-F Elsevier CrossRefGoogle Scholar
  26. Holland JB (2015) MAGIC maize: a new resource for plant genetics. Genome Biol 16(1):163. doi: 10.1186/s13059-015-0713-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Iehisa JCM, Matsuura T, Mori IC, Takumi S (2014) Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J Plant Physiol 171(2):25–34. doi: 10.1016/j.jplph.2013.10.001 CrossRefPubMedGoogle Scholar
  28. International Grains Council (2016) Grain market report, London
  29. International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (New York, NY) 345(6194):1250092. doi: 10.1126/science.1251788 CrossRefGoogle Scholar
  30. Kantar M, Lucas SJ, Budak H (2011) Drought stress: molecular genetics and genomics approaches. In Advances in botanical research. Advances in Botanical Research (Elsevier):445–493Google Scholar
  31. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenics 12:172–175. doi: 10.1111/j.1469-1809.1943.tb02321.x CrossRefGoogle Scholar
  32. Li G, Bai G, Carver BF, Elliott NC, Bennett RS, Wu Y, Hunger R, Michael Bonman J, Xu X (2016) Genome-wide association study reveals genetic architecture of coleoptile length in wheat. In: Theoretical and applied genetics. Springer, Berlin Heidelberg, pp 1–11. doi: 10.1007/s00122-016-2820-1. Google Scholar
  33. Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P et al (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology. doi: 10.3390/biology1020370
  34. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30(2):1231–1235. doi: 10.1007/s11032-012-9706-y CrossRefGoogle Scholar
  35. Lucas S, Dogan E, Budak H (2011a) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 483:22–28CrossRefPubMedGoogle Scholar
  36. Lucas S, Durmaz E, Akpınar BA, Budak H (2011b) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49:346–351CrossRefPubMedGoogle Scholar
  37. Lucas SJ, Akpınar B, Šimková H, Kubaláková M, Doležel J, Budak H (2014) Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics 15(1):1080. doi: 10.1186/1471-2164-15-1080 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maccaferri M, Cane’ MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F et al (2014) A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 15(1):873. doi: 10.1186/1471-2164-15-873 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13(5):648–663. doi: 10.1111/pbi.12288 CrossRefPubMedGoogle Scholar
  40. Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67(4):1161–1178. doi: 10.1093/jxb/erw039 CrossRefPubMedPubMedCentralGoogle Scholar
  41. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Sherry A, Flint-Garcia et al (2009) Genetic properties of the maize nested association mapping population. Science (New York, NY) 325(5941):737–740. doi: 10.1126/science.1174320 CrossRefGoogle Scholar
  42. Milner SG, Maccaferri M, Huang BE, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi S (2016) A multiparental cross population for mapping QTL for agronomic traits in durum wheat ( Triticum turgidum ssp. durum ). Plant Biotechnol J 14(2):735–748. doi: 10.1111/pbi.12424 CrossRefPubMedGoogle Scholar
  43. Ogut F, Bian Y, Bradbury PJ, Holland JB (2015) Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population. Heredity 114(6):552–563. doi: 10.1038/hdy.2014.123 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oliveira HR, Hagenblad J, Leino MW, Leigh FJ, Lister DL, Penã-Chocarro L, Jones MK (2014) Wheat in the Mediterranean revisited—tetraploid wheat landraces assessed with elite bread wheat single nucleotide polymorphism markers. BMC Genet 15:54. doi: 10.1186/1471-2156-15-54 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16(5):275–284. doi: 10.1038/nrg3908 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Peng J, Richards DE, Hartley NM, Murphy GP (1999) Green Revolution’genes encode mutant gibberellin response modulators. “Green Revolution”genes Encode Mutant Gibberellin Response Modulators 400:8–13. doi: 10.1038/22307 Google Scholar
  47. Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Stephen Baenziger P, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161(4):1806–1819. doi: 10.1104/pp.113.214262 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.) Theor Appl Genet 114(7):1173–1183. doi: 10.1007/s00122-007-0509-1 CrossRefPubMedGoogle Scholar
  49. Rice WER (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi: 10.2307/2409177 CrossRefPubMedGoogle Scholar
  50. Schillinger WF, Donaldson E, Allan RE, Jones SS (1998) Winter wheat seedling emergence from deep sowing depths. Agron J 90(5):582–586. doi: 10.2134/agronj1998.00021962009000050002x CrossRefGoogle Scholar
  51. Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354(6312):aag1550–aag1550. doi: 10.1126/science.aag1550 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329)Google Scholar
  53. Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63(1):25–31. doi: 10.1093/jxb/err269 CrossRefPubMedGoogle Scholar
  54. Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.) Theor Appl Genet 123:555–569. doi: 10.1007/s00122-011-1607-7 CrossRefPubMedGoogle Scholar
  55. van Poecke RMP, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EAG (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J 11(7):809–817. doi: 10.1111/pbi.12072 CrossRefPubMedGoogle Scholar
  56. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539. doi: 10.1111/j.1365-313X.2005.02593.x CrossRefPubMedGoogle Scholar
  57. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93(1):77–78. doi: 10.1093/jhered/93.1.77 CrossRefPubMedGoogle Scholar
  58. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796. doi: 10.1111/pbi.12183
  59. Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA, Coghill J et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14(5):1195–1206. doi: 10.1111/pbi.12485 CrossRefPubMedGoogle Scholar
  60. Zhou W, Wu S, Ding M, Li J, Shi Z, Wei W, Guo J, Zhang H, Jiang Y, Rong J (2016) Mapping of Ppd-B1, a major candidate gene for late heading on wild emmer chromosome arm 2BS and assessment of its interactions with early heading QTLs on 3AL. PLoS One 11(2):e0147377. doi: 10.1371/journal.pone.0147377 Public Library of Science CrossRefPubMedPubMedCentralGoogle Scholar
  61. Žofajová A, Pšenáková I, Havrlentová M, Piliarová M (2012) Accumulation of total anthocyanins in wheat grain. Agriculture 58(2):50–56. doi: 10.2478/v10207-012-0006-7 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.SU Nanotechnology Research and Application CentreSabanci UniversityTuzlaTurkey
  2. 2.Breeding and Genetics, Field Crops Central Research InstituteAnkaraTurkey
  3. 3.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  4. 4.412 Leon Johnson Hall, Cereal Genomics Lab, Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanUSA

Personalised recommendations