Functional & Integrative Genomics

, Volume 17, Issue 2–3, pp 237–251 | Cite as

Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes

Original Article


MicroRNAs (miRNAs) guide regulation at the post-transcriptional level by inducing messenger RNA (mRNA) degradation or translational inhibition of their target protein-coding genes. Durum wheat miRNAs may contribute to the genotypic water-deficit stress response in different durum varieties. Further investigation of the interactive miRNA-target regulatory modules and experimental validation of their response to water stress will contribute to our understanding of the small RNA-mediated molecular networks underlying stress adaptation in durum wheat. In this study, a comprehensive genome-wide in silico analysis using the updated Triticum transcriptome assembly identified 2055 putative targets for 113 conserved durum miRNAs and 131 targets for four novel durum miRNAs that putatively contribute to genotypic stress tolerance. Predicted mRNA targets encode various transcription factors, binding proteins and functional enzymes, which play vital roles in multiple biological pathways such as hormone signalling and metabolic processes. Quantitative PCR profiling further characterised 43 targets and 5 miRNAs with stress-responsive and/or genotype-dependent differential expression in two stress-tolerant and two stress-sensitive durum genotypes subjected to pre-anthesis water-deficit stress. Furthermore, a 5′ RLM-RACE approach validated nine mRNA targets cleaved by water-deficit stress-responsive miRNAs, which, to our knowledge, has not been previously reported in durum wheat. The present study provided experimental evidence of durum miRNAs and target genes in response to water-deficit stress in contrasting durum varieties, providing new insights into the regulatory roles of the miRNA-guided RNAi mechanism underlying stress adaptation in durum wheat.


Durum wheat microRNAs mRNA targets water-deficit stress response 

Supplementary material

10142_2016_515_MOESM1_ESM.xlsx (15 kb)
Electronic supplementary materials Table S1qPCR primers of 43 target genes used in this study. (XLSX 15 kb)
10142_2016_515_MOESM2_ESM.xlsx (10 kb)
Electronic supplementary materials Table S2Forward qPCR primers of five stress-responsive durum miRNAs used in this study. (XLSX 9 kb)
10142_2016_515_MOESM3_ESM.xlsx (11 kb)
Electronic supplementary materials Table S35′ RLM-RACE adaptor and primers used in this study. (XLSX 10 kb)
10142_2016_515_MOESM4_ESM.xlsx (183 kb)
Electronic supplementary materials Table S4Predicted target genes of 69 conserved water-deficit stress-responsive miRNAs and their GO annotations. (XLSX 182 kb)
10142_2016_515_MOESM5_ESM.xlsx (166 kb)
Electronic supplementary materials Table S5Predicted targets of 44 conserved durum miRNAs (identified using MiRBase) and their GO analysis results. (XLSX 165 kb)
10142_2016_515_MOESM6_ESM.xlsx (31 kb)
Electronic supplementary materials Table S6Predicted targets of four novel stress-responsive durum miRNAs identified using the new Triticum assembly and their GO analysis results. (XLSX 31 kb)
10142_2016_515_MOESM7_ESM.xlsx (277 kb)
Electronic supplementary materials Table S7Combined Gene Ontology classification at different GO levels of the predicted targets of 69 conserved stress-responsive miRNAs for biological processes (a), molecular functions (b) and cell components (c). (XLSX 277 kb)
10142_2016_515_MOESM8_ESM.xlsx (87 kb)
Electronic supplementary materials Table S8Combined Gene Ontology classification at different GO levels of predicted targets of four novel stress-responsive miRNAs for biological processes (a), molecular functions (b) and cell components (c). (XLSX 87 kb)
10142_2016_515_MOESM9_ESM.xlsx (168 kb)
Electronic supplementary materials Table S9Combined Gene Ontology classification at different GO levels of predicted targets of 44 conserved durum miRNAs for biological processes (a), molecular functions (b) and cell components (c). (XLSX 168 kb)


  1. Agharbaoui Z, Leclercq M, Remita MA, Badawi MA, Lord E, Houde M, Danyluk J, Diallo AB, Sarhan F (2015) An integrative approach to identify hexaploid wheat miRNAome associated with development and tolerance to abiotic stress. BMC Genomics. doi:10.1186/s12864-015-1490-8 PubMedPubMedCentralGoogle Scholar
  2. Akpinar BA, Kantar M, Budak H (2015) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics 15:587–598. doi:10.1007/s10142-015-0453-0 CrossRefPubMedGoogle Scholar
  3. Alptekin B, Budak H (2016) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics. doi:10.1007/s10142-016-0487-y Google Scholar
  4. Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inze D, Pe ME, Mica E (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6:423–443. doi:10.1093/mp/sss160 CrossRefPubMedGoogle Scholar
  5. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741. doi:10.1038/nrm4085 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Budak H, Akpinar A (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15:791–799. doi:10.1089/omi.2011.0073 CrossRefPubMedGoogle Scholar
  7. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531. doi:10.1007/s10142-015-0451-2 CrossRefPubMedGoogle Scholar
  8. Budak H, Bala Ani A (2016) Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii Front Plant Sci. doi:10.3389/fpls.2016.00606
  9. Budak H, Kantar M, Yucebilgili Kurtoglu K (2013) Drought tolerance in modern and wild wheat. Sci World J. doi:10.1155/2013/548246 Google Scholar
  10. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015a) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci. doi:10.3389/fpls.2015.01012 Google Scholar
  11. Budak H, Kantar M, Bulut R, Akpinar BA (2015b) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13. doi:10.1016/j.plantsci.2015.02.008 CrossRefPubMedGoogle Scholar
  12. Budak H, Khan Z, Kantar M (2015c) History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief Funct Genomics 14:189–198. doi:10.1093/bfgp/elu021 CrossRefPubMedGoogle Scholar
  13. Cao D, Wang J, Ju Z, Liu Q, Li S, Tian H, Fu D, Zhu H, Luo Y, Zhu B (2016) Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Sci 247:1–12. doi:10.1016/j.plantsci.2016.02.012 CrossRefPubMedGoogle Scholar
  14. Cheah BH, Nadarajah K, Divate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genomics. doi:10.1186/s12864-015-1851-3 PubMedPubMedCentralGoogle Scholar
  15. Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G (2016) Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol. doi:10.1186/s12870-016-0770-z Google Scholar
  16. Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. doi:10.4161/psb.23681 Google Scholar
  17. Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. doi:10.1155/2008/619832 PubMedGoogle Scholar
  18. Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot. doi:10.1093/jxb/eru002 Google Scholar
  19. de Deus KE, Lanna AC, Abreu FRM, Silveira RDD, Pereira WJ, Brondani C, Vianello RP (2015) Molecular and biochemical characterization of superoxide dismutase (SOD) in upland rice under drought. Aust J Crop Sci 9:744–753Google Scholar
  20. Ding Q, Zeng J, He X-Q (2014) Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar. BMC Plant Biol. doi:10.1186/s12870-014-0267-6 Google Scholar
  21. Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261. doi:10.1016/j.plantsci.2014.10.002 CrossRefPubMedGoogle Scholar
  22. Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high-throughput sequencing. Int J Mol Sci 14:2717–2738. doi:10.3390/ijms14022717 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eren H, Pekmezci MY, Okay S, Turktas M, Inal B, Ilhan E, Atak M, Erayman M, Unver T (2015) Hexaploid wheat (Triticum aestivum) root miRNome analysis in response to salt stress. Ann Appl Biol 167:208–216. doi:10.1111/aab.12219 CrossRefGoogle Scholar
  24. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno M, Alcobendas R, Artlip T, Hernandez J (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613. doi:10.1093/jxb/erq432 CrossRefPubMedGoogle Scholar
  25. Feng H, Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z (2013) Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol 83:433–443. doi:10.1007/s11103-013-0101-9 CrossRefPubMedGoogle Scholar
  26. Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ (2016) Differential expression of microRNAs and potential targets under drought stress in barley. Plant Cell Environ. doi:10.1111/pce.12764 PubMedGoogle Scholar
  27. Fromm S, Senkler J, Eubel H, Peterhänsel C, Braun H-P (2016) Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. J Exp Bot. doi:10.1093/jxb/erw165 PubMedPubMedCentralGoogle Scholar
  28. Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y (2015) Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants. doi:10.1038/nplants.2015.196 PubMedCentralGoogle Scholar
  29. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016 CrossRefPubMedGoogle Scholar
  30. Gupta OP, Meena NL, Sharma I, Sharma P (2014) Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 41:4623–4629. doi:10.1007/s11033-014-3333-0 CrossRefPubMedGoogle Scholar
  31. Hackenberg M, Gustafson P, Langridge P, Shi B-J (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotech J 13:2–13. doi:10.1111/pbi.12220 CrossRefGoogle Scholar
  32. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689. doi:10.1093/emboj/cdg547 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544. doi:10.1038/ng.591 CrossRefPubMedGoogle Scholar
  34. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. doi:10.1146/annurev.arplant.57.032905.105218 CrossRefPubMedGoogle Scholar
  35. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507. doi:10.1007/s10142-010-0181-4 CrossRefPubMedGoogle Scholar
  36. Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484. doi:10.1007/s00425-010-1309-4 CrossRefPubMedGoogle Scholar
  37. Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957. doi:10.1007/s00299-013-1461-y CrossRefPubMedGoogle Scholar
  38. Krasileva KV, Buffalo V, Bailey P, Pearce S, Ayling S, Tabbita F, Soria M, Wang S, Akhunov E, Uauy C, Dubcovsky J, Consortium I (2013) Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol. doi:10.1186/gb-2013-14-6-r66 PubMedPubMedCentralGoogle Scholar
  39. Ku Y-S, Wong JW-H, Mui Z, Liu X, Hui JH-L, Chan T-F, Lam H-M (2015) Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods. Int J Mol Sci 16:24532–24554. doi:10.3390/ijms161024532 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai R (2014) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomics 15:323–348. doi:10.1007/s10142-014-0421-0 CrossRefPubMedGoogle Scholar
  41. Kurtoglu KY, Kantar M, Lucas SJ, Budak H (2013) Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One. doi:10.1371/journal.pone.0069801 PubMedPubMedCentralGoogle Scholar
  42. Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458. doi:10.1016/j.tplants.2013.04.006 CrossRefPubMedGoogle Scholar
  43. Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, Van Der Knaap E (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520. doi:10.1093/jxb/eru141 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Liu H, Able AJ, Able JA (2016) SMARTER de-stressed cereal breeding. Trends Plant Sci. doi:10.1016/j.tplants.2016.07.006
  45. Liu H, Searle IR, Mather DE, Able AJ, Able JA (2015a) Morphological, physiological and yield responses of durum wheat to pre-anthesis water deficit stress are genotype-dependent. Crop & Pasture Science 66:1024–1038. doi:10.1071/CP15013 CrossRefGoogle Scholar
  46. Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA (2015b) Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS One. doi:10.1371/journal.pone.0142799 CrossRefGoogle Scholar
  47. Lu Y, Feng Z, Bian L, Xie H, Liang J (2011) miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol 38:44–53. doi:10.1071/fp10178 CrossRefGoogle Scholar
  48. Lu Y-Y, Deng X-P, Kwak S-S (2015) Over expression of CuZn superoxide dismutase (CuZn SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress. Afr J Biotechnol 9:8378–8391Google Scholar
  49. Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773. doi:10.1093/jxb/erq412 CrossRefPubMedGoogle Scholar
  50. Ma X, Xin Z, Wang Z, Yang Q, Guo S, Guo X, Cao L, Lin T (2015) Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol. doi:10.1186/s12870-015-0413-9 Google Scholar
  51. Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y (2013) Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol. doi:10.1186/1471-2229-13-140 Google Scholar
  52. Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104. doi:10.1146/annurev-arplant-042110-103857 CrossRefPubMedGoogle Scholar
  53. Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419. doi:10.1105/tpc.108.064691 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One. doi:10.1371/journal.pone.0095800 Google Scholar
  55. Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress a case study: durum wheat mitochondria. J Exp Bot 58:195–210CrossRefPubMedGoogle Scholar
  56. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295. doi:10.1016/j.pbi.2011.02.001 CrossRefPubMedGoogle Scholar
  57. Procissi A, Guyon A, Pierson E, Giritch A, Knuiman B, Grandjean O, Tonelli C, Derksen J, Pelletier G, Bonhomme S (2003) KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J 36:894–904CrossRefPubMedGoogle Scholar
  58. Qu B, He X, Wang J, Zhao Y, Teng W, Shao A, Zhao X, Ma W, Wang J, Li B, Li Z, Tong Y (2015) A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167:411–423. doi:10.1104/pp.114.246959 CrossRefPubMedGoogle Scholar
  59. Rubio-Somoza I, Weigel D (2013) Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet. doi:10.1371/journal.pgen.1003374 PubMedPubMedCentralGoogle Scholar
  60. Santhanagopalan I, Basha E, Ballard KN, Bopp NE, Vierling E (2015) Model chaperones: small heat shock proteins from plants. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins, 1st edn. Springer International Publishing, Switzerland, pp. 119–153CrossRefGoogle Scholar
  61. Sharma E, Sharma R, Borah P, Jain M, Khurana JP (2015) Emerging roles of auxin in abiotic stress responses. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants, 1st edn. Springer, New York, pp. 299–328CrossRefGoogle Scholar
  62. Singh A, Singh S, Panigrahi KC, Reski R, Sarkar AK (2014) Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana. Plant Cell Rep 33:945–953. doi:10.1007/s00299-014-1573-z CrossRefPubMedGoogle Scholar
  63. Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625. doi:10.1093/mp/ssr007 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sun G, Stewart CN Jr, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One. doi:10.1371/journal.pone.0032017 Google Scholar
  65. Sun F, Guo G, Du J, Guo W, Peng H, Ni Z, Sun Q, Yao Y (2014) Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol. doi:10.1186/1471-2229-14-142 Google Scholar
  66. Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sunkar R, Viswanathan C, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309. doi:10.1016/j.tplants.2007.05.001 CrossRefPubMedGoogle Scholar
  68. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203. doi:10.1016/j.tplants.2012.01.010 CrossRefPubMedGoogle Scholar
  69. Tabata R, Ikezaki M, Fujibe T, Aida M, C-e T, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175. doi:10.1093/pcp/pcp176 CrossRefPubMedGoogle Scholar
  70. Turchi L, Baima S, Morelli G, Ruberti I (2015) Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. J Exp Bot 66:5043–5053. doi:10.1093/jxb/erv174 CrossRefPubMedGoogle Scholar
  71. Vazquez F, Legrand S, Windels D (2010) The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci 15:337–345. doi:10.1016/j.tplants.2010.04.001 CrossRefPubMedGoogle Scholar
  72. Wang HLV, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdiscip Rev RNA. doi:10.1002/wrna.1340 Google Scholar
  73. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi:10.1016/j.tplants.2004.03.006 CrossRefPubMedGoogle Scholar
  74. Wang J-W, Wang L-J, Mao Y-B, Cai W-J, Xue H-W, Chen X-Y (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216. doi:10.1105/tpc.105.033076 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang M, Wang Q, Zhang B (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26–32. doi:10.1016/j.gene.2013.08.009 CrossRefPubMedGoogle Scholar
  76. Wang Y, Li K, Chen L, Zou Y, Liu H, Tian Y, Li D, Wang R, Zhao F, Ferguson BJ, Gresshoff PM, Li X (2015) microRNA167-directed regulation of the auxin response factors, GmARF8a and GmARF8b, is required for soybean nodulation and lateral root development. Plant Physiol. doi:10.1104/pp.15.00265 Google Scholar
  77. Wu M-F, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218. doi:10.1242/dev.02602 CrossRefPubMedGoogle Scholar
  78. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One. doi:10.1371/journal.pone.0030039 Google Scholar
  79. Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B (2014) High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotech J 12:354–366. doi:10.1111/pbi.12142 CrossRefGoogle Scholar
  80. Xie F, Jones DC, Wang Q, Sun R, Zhang B (2015a) Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotech J 13:355–369. doi:10.1111/pbi.12296 CrossRefGoogle Scholar
  81. Xie F, Wang Q, Sun R, Zhang B (2015b) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804. doi:10.1093/jxb/eru437 CrossRefPubMedGoogle Scholar
  82. Xu Z, Dooner HK (2006) The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 172:1251–1261. doi:10.1534/genetics.105.050237 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H (2013) Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One. doi:10.1371/journal.pone.0069810 Google Scholar
  84. Xu MY, Zhang L, Li WW, Hu XL, Wang M-B, Fan YL, Zhang CY, Wang L (2014) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101. doi:10.1093/jxb/ert353 CrossRefPubMedGoogle Scholar
  85. Yadav SR, Khanday I, Majhi BB, Veluthambi K, Vijayraghavan U (2011) Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol 52:2123–2135. doi:10.1093/pcp/pcr142 CrossRefPubMedGoogle Scholar
  86. Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218. doi:10.1111/pce.12130 CrossRefPubMedGoogle Scholar
  87. Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z (2013) Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant 147:181–193. doi:10.1111/j.1399-3054.2012.01653.x CrossRefPubMedGoogle Scholar
  88. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761. doi:10.1093/jxb/erv013 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15. doi:10.1002/jcp.24685 CrossRefPubMedGoogle Scholar
  90. Zhang Y-C, Yu Y, Wang C-Y, Li Z-Y, Liu Q, Xu J, Liao J-Y, Wang X-J, Qu L-H, Chen F, Xin P, Yan C, Chu J, Li H-Q, Chen Y-Q (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31:848–852. doi:10.1038/nbt.2646 CrossRefPubMedGoogle Scholar
  91. Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ (2015) Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. J Exp Bot. doi:10.1093/jxb/erv521 Google Scholar
  92. Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9. doi:10.1111/j.1399-3054.2011.01477.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineUniversity of Adelaide, Waite Research InstituteGlen OsmondAustralia

Personalised recommendations