Functional & Integrative Genomics

, Volume 17, Issue 2–3, pp 171–187 | Cite as

Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors

Original Article

Abstract

MicroRNAs are critical players of post-transcriptional gene regulation with profound effects on the fundamental processes of cellular life. Their identification and characterization, together with their targets, hold great significance in exploring and exploiting their roles on a functional context, providing valuable clues into the regulation of important biological processes, such as stress tolerance or environmental adaptation. Wheat is a hardy crop, extensively harvested in temperate regions, and is a major component of the human diet. With the advent of the next generation sequencing technologies considerably decreasing sequencing costs per base-pair, genomic, and transcriptomic data from several wheat species, including the progenitors and wild relatives have become available. In this study, we performed in silico identification and comparative analysis of microRNA repertoires of bread wheat (Triticum aestivum L.) and its diploid progenitors and relatives, Aegilops sharonensis, Aegilops speltoides, Aegilops tauschii, Triticum monococcum, and Triticum urartu through the utilization of publicly available transcriptomic data. Over 200 miRNA families were identified, majority of which have not previously been reported. Ancestral relationships expanded our understanding of wheat miRNA evolution, while T. monococcum miRNAs delivered important clues on the effects of domestication on miRNA expression. Comparative analyses on wild Ae. sharonensis accessions highlighted candidate miRNAs that can be linked to stress tolerance. The miRNA repertoires of bread wheat and its diploid progenitors and relatives provide important insight into the diversification and distribution of miRNA genes, which should contribute to the elucidation of miRNA evolution of Poaceae family. A thorough understanding of the convergent and divergent expression profiles of miRNAs in different genetic backgrounds can provide unique opportunities to modulation of gene regulation for better crop performance.

Keywords

Bread wheat Poaceae miRNA TE-miR RNA-Seq 

Supplementary material

10142_2016_487_Fig5_ESM.gif (131 kb)
Supplementary Figure S1

Correlation analysis between assembly length (Mb), number of identified miRNA families and corresponding stem-loop counts. Correlation coefficients were calculated respect to “Pearson”-type correlation. (GIF 130 kb)

10142_2016_487_MOESM1_ESM.tif (95 kb)
High Resolution Image (TIF 95 kb)
10142_2016_487_Fig6_ESM.gif (54 kb)
Supplementary Figure S2

Comparative analysis of retained/lost miRNA percentage between different relatives & progenitors and bread wheat. Whole miRNA families, identified through 16 different genotypes, were counted in case of Ae. sharonensis. (GIF 53 kb)

10142_2016_487_MOESM2_ESM.tif (16 kb)
High Resolution Image (TIF 16 kb)
10142_2016_487_Fig7_ESM.gif (262 kb)
Supplementary Figure S3

GO annotations for (A) Biological Process, (B) Cellular Component and (C) for Molecular Function, for all 16 Ae. sharonensis genotypes. All target annotations as given in Supplementary File 3 can be provided upon request. (GIF 261 kb)

10142_2016_487_MOESM3_ESM.tif (1.4 mb)
High Resolution Image (TIF 1388 kb)
10142_2016_487_MOESM4_ESM.xlsx (11 kb)
Supplementary File S1(xlsx) Assembly metrics for all genotypes included in this study. (XLSX 11 kb)
10142_2016_487_MOESM5_ESM.xlsx (883 kb)
Supplementary File S2(xlsx) The list of all putative miRNAs and pre-miRNAs identified from all genotypes. Ash: Ae. sharonensis, Asp: Ae. speltoides, Ata: Ae. tauschii, Tae: T. aestivum, Tm_a: T. monococcum ssp. aegilopoides, Tm_m: T. monococcum ssp. monococcum, Tur: T. urartu.(XLSX 882 kb)
10142_2016_487_MOESM6_ESM.xlsx (14.2 mb)
Supplementary File S3(xlsx) Putative miRNA targets and target annotations for, Asp: Ae. speltoides, Ata: Ae. tauschii, Tae: T. aestivum, Tm_a: T. monococcum ssp. aegilopoides, Tm_m: T. monococcum ssp. monococcum, Tur: T. urartu (XLSX 14497 kb)

References

  1. Akhunova AR, Matniyazov RT, Liang H, Akhunov ED (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 11:505. doi:10.1186/1471-2164-11-505 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akpinar BA, Avsar B, Lucas SJ, Budak H (2012) Plant abiotic stress signaling. Plant Signal Behav 7:1450–1455PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akpinar BA, Lucas SJ, Vrána J, et al. (2014) Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol J 1–13. doi: 10.1111/pbi.12302
  4. Akpinar BA, Kantar M, Budak H (2015) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct Integr Genomics. doi:10.1007/s10142-015-0453-0 Google Scholar
  5. Ani Akpinar B, Yuce M, Lucas S et al (2015) Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci Rep 5:10763. doi:10.1038/srep10763 PubMedCentralCrossRefGoogle Scholar
  6. Barakat A, Sriram A, Park J et al (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13:481. doi:10.1186/1471-2164-13-481 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bouyioukos C, Moscou MJ, Champouret N et al (2013) Characterisation and analysis of the Aegilops sharonensis transcriptome, a wild relative of wheat in the Sitopsis section. PLoS ONE 8:1–14. doi:10.1371/journal.pone.0072782 CrossRefGoogle Scholar
  9. Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710. doi:10.1038/nature11650 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Budak H (2010) Plant genetic resources: effective utilization. Engineering. doi:10.1081/E-EBAF-9780849350504 Google Scholar
  11. Budak H, Akpinar A (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. Omi A J Integr Biol 15:791–799. doi:10.1089/omi.2011.0073 CrossRefGoogle Scholar
  12. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics. doi:10.1007/s10142-015-0451-2 Google Scholar
  13. Budak H, Kantar M (2015) Harnessing NGS and big data optimally: comparison of miRNA prediction from assembled versus non-assembled sequencing data—the case of the grass Aegilops tauschii complex genome. Omi A J Integr Biol 19:407–415. doi:10.1089/omi.2015.0038 CrossRefGoogle Scholar
  14. Budak H, Kantar M, Yucebilgili Kurtoglu K (2013) Drought tolerance in modern and wild wheat. Sci World J. doi:10.1155/2013/548246 Google Scholar
  15. Budak H, Khan Z, Kantar M (2014) History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief Funct Genomics elu021–. doi: 10.1093/bfgp/elu021
  16. Budak H, Kantar M, Bulut R, Akpinar BA (2015a) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13. doi:10.1016/j.plantsci.2015.02.008 PubMedCrossRefGoogle Scholar
  17. Budak H, Bulut R, Kantar M, Alptekin B (2015a) MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics elv026. doi: 10.1093/bfgp/elv026
  18. Campo S, Peris-Peris C, Siré C et al (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212–227. doi:10.1111/nph.12292 PubMedCrossRefGoogle Scholar
  19. Chalupska D, Lee HY, Faris JD et al (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci U S A 105:9691–9696. doi:10.1073/pnas.0803981105 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chamnongpol S, Maroney PA, Nilsen TW (2010) A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. Methods Mol Biol 667:3–17. doi:10.1261/rna.518107 PubMedCrossRefGoogle Scholar
  21. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025. doi:10.1126/science.1088060 PubMedCrossRefGoogle Scholar
  22. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406. doi:10.1146/annurev.arplant.58.032806.103835 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen M, Cao Z (2015) Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina. BMC Genomics 16:696. doi:10.1186/s12864-015-1891-8 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi:10.1155/2008/619832 PubMedCrossRefGoogle Scholar
  25. Curaba J, Spriggs A, Taylor J et al (2012) miRNA regulation in the early development of barley seed. BMC Plant Biol 12:120. doi:10.1186/1471-2229-12-120 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dai X, Zhao PX (2011) PsRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. doi:10.1093/nar/gkr319 Google Scholar
  27. Devos KM, Dubcovsky J, Dvořák J et al (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288. doi:10.1007/BF00220890 PubMedCrossRefGoogle Scholar
  28. Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586. doi:10.1007/s10722-004-2681-3 CrossRefGoogle Scholar
  29. Dvorák J, McGuire PE (1981) Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species. Genetics 97:391–414PubMedPubMedCentralGoogle Scholar
  30. Dvořák J, Zhang H-B, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016. doi:10.1139/g89-545 CrossRefGoogle Scholar
  31. Dvorák J, Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31. doi:10.1139/g93-004 PubMedCrossRefGoogle Scholar
  32. Eilam T, Anikster Y, Millet E et al (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50:1029–1037. doi:10.1139/G07-083 PubMedCrossRefGoogle Scholar
  33. El-Shehawi AM, Fahmi AI, Sayed SM, Elseehy MM (2012) Genetic fingerprinting of wheat and its progenitors by mitochondrial gene orf256. Biomolecules 2:228–239. doi:10.3390/biom2020228 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Escobar JS, Scornavacca C, Cenci A et al (2011) Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 11:181. doi:10.1186/1471-2148-11-181 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2, e219. doi:10.1371/journal.pone.0000219 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS ONE 10, e0139002. doi:10.1371/journal.pone.0139002 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fattash I, Rooke R, Wong A et al (2013) Miniature inverted-repeat transposable elements: discovery, distribution, and activity 1. Genome 56:475–486. doi:10.1139/gen-2012-0174 PubMedCrossRefGoogle Scholar
  38. Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192:763–774. doi:10.1534/genetics.112.146316 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fox SE, Geniza M, Hanumappa M et al (2014) De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS ONE. doi:10.1371/journal.pone.0096855 Google Scholar
  40. Fricano A, Brandolini A, Rossini L et al (2014) Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines. G3; Genes|Genomes|Genetics 4:1931–1941. doi:10.1534/g3.114.013623 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi:10.1038/nbt.1883 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545. doi:10.1146/annurev.arplant.48.1.525 PubMedCrossRefGoogle Scholar
  43. Haider N (2012) Evidence for the origin of the B genome of bread wheat based on chloroplast DNA. Turkish J Agric For 36:13–25. doi:10.3906/tar-1011-1394 Google Scholar
  44. Han R, Jian C, Lv J et al (2014) Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics 15:289. doi:10.1186/1471-2164-15-289 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287. doi:10.1016/j.jinorgbio.2008.10.019 PubMedCrossRefGoogle Scholar
  46. Iehisa JCM, Shimizu A, Sato K et al (2012) Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor. DNA Res 19:487–497. doi:10.1093/dnares/dss028 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–5. doi:10.1038/nature12028 PubMedCrossRefGoogle Scholar
  48. Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosom Res 2:59–64. doi:10.1007/BF01539455 CrossRefGoogle Scholar
  49. Jin W, Li N, Zhang B et al (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121:351–355. doi:10.1007/s10265-007-0139-3 PubMedCrossRefGoogle Scholar
  50. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799. doi:10.1016/j.molcel.2004.05.027 PubMedCrossRefGoogle Scholar
  51. Kadri S, Hinman V, Benos PV (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinf 10(Suppl 1):S35. doi:10.1186/1471-2105-10-S1-S35 CrossRefGoogle Scholar
  52. Kalifa Y, Gilad A, Konrad Z et al (2004) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381:373–378. doi:10.1042/BJ20031800 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507. doi:10.1007/s10142-010-0181-4 PubMedCrossRefGoogle Scholar
  54. Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484. doi:10.1007/s00425-010-1309-4 PubMedCrossRefGoogle Scholar
  55. Kantar M, Akpinar BA, Valárik M et al (2012) Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics 12:465–479. doi:10.1007/s10142-012-0285-0 PubMedCrossRefGoogle Scholar
  56. Kilian B, Özkan H, Deusch O et al (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227. doi:10.1093/molbev/msl151 PubMedCrossRefGoogle Scholar
  57. Kozomara A, Griffiths-Jones S (2011) MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. doi:10.1093/nar/gkq1027 PubMedGoogle Scholar
  58. Kruszka K, Pacak A, Swida-Barteczka A et al (2013) Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics 14:34. doi:10.1186/1471-2164-14-34 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kulcheski FR, de Oliveira LF, Molina LG et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307. doi:10.1186/1471-2164-12-307 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kumar A, Simons K, Iqbal MJ et al (2012) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597. doi:10.1186/1471-2164-13-597 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kurtoglu KY, Kantar M, Lucas SJ, Budak H (2013) Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS ONE. doi:10.1371/journal.pone.0069801 PubMedPubMedCentralGoogle Scholar
  62. Kurtoglu KY, Kantar M, Budak H (2014) New wheat microRNA using whole-genome sequence. Funct Integr Genomics 14:363–379. doi:10.1007/s10142-013-0357-9 PubMedCrossRefGoogle Scholar
  63. Kuzuoglu-Ozturk D, Yalcinkaya OC, Akpinar BA et al (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236:1081–1092. doi:10.1007/s00425-012-1657-3 PubMedCrossRefGoogle Scholar
  64. Li Y, Li C, Xia J, Jin Y (2011) Domestication of transposable elements into microRNA genes in plants. PLoS ONE. doi:10.1371/journal.pone.0019212 Google Scholar
  65. Li A, Liu D, Wu J, et al. (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 1–24. doi: 10.1105/tpc.114.124388
  66. Ling H-Q, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90. doi:10.1038/nature11997 PubMedCrossRefGoogle Scholar
  67. Liu Q (2012) Novel miRNAs in the control of arsenite levels in rice. Funct Integr Genomics 12:649–658. doi:10.1007/s10142-012-0282-3 PubMedCrossRefGoogle Scholar
  68. Liu HY, Dai JR, Feng DR et al (2010) Characterization of a novel plantain asr gene, mpasr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol 52:315–323. doi:10.1111/j.1744-7909.2010.00912.x PubMedCrossRefGoogle Scholar
  69. Liu W, Xu L, Wang Y et al (2015) Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14024. doi:10.1038/srep14024 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056. doi:10.1126/science.1076311 PubMedCrossRefGoogle Scholar
  71. Lopes MS, El-Basyoni I, Baenziger PS et al (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486. doi:10.1093/jxb/erv122 PubMedCrossRefGoogle Scholar
  72. Lucas SJ, Budak H (2012) Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS ONE. doi:10.1371/journal.pone.0040859 Google Scholar
  73. Lucas SJ, Baştaş K, Budak H (2014) Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536:254–264. doi:10.1016/j.gene.2013.12.025 PubMedCrossRefGoogle Scholar
  74. Luo YC, Zhou H, Li Y et al (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116. doi:10.1016/j.febslet.2006.08.046 PubMedCrossRefGoogle Scholar
  75. Luo M-C, Gu YQ, You FM et al (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A 110:7940–5. doi:10.1073/pnas.1219082110 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lv S, Nie X, Wang L et al (2012) Identification and characterization of microRNAs from barley (hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13:2973–2984. doi:10.3390/ijms13032973 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marcussen T, Sandve SR, Heier L et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092. doi:10.1126/science.1250092 PubMedCrossRefGoogle Scholar
  78. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. doi:10.1007/978-1-60327-429-6-1 PubMedCrossRefGoogle Scholar
  79. Middleton CP, Senerchia N, Stein N et al (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the triticeae tribe. PLoS ONE. doi:10.1371/journal.pone.0085761 Google Scholar
  80. Mochida K, Shinozaki K (2013) Unlocking triticeae genomics to sustainably feed the future. Plant Cell Physiol 54:1931–1950. doi:10.1093/pcp/pct163 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Munns R, James RA, Xu B et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364PubMedCrossRefGoogle Scholar
  82. Murat F, Zhang R, Guizard S et al (2014) Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol 6:12–33. doi:10.1093/gbe/evt200 PubMedCrossRefGoogle Scholar
  83. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–9. doi:10.1126/science.1126088 PubMedCrossRefGoogle Scholar
  84. Nazarov PV, Reinsbach SE, Muller A et al (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41:2817–2831. doi:10.1093/nar/gks1471 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Neilson JR, Zheng GXY, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589. doi:10.1101/gad.1522907 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nussbaumer T, Martis MM, Roessner SK et al (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. doi:10.1093/nar/gks1153 PubMedGoogle Scholar
  87. Olivera PD, Kolmer JA, Anikster Y, Steffenson BJ (2007) Resistance of sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis 91:942–950. doi:10.1094/pdis-91-8-0942 CrossRefGoogle Scholar
  88. Parry MAJ, Reynolds M, Salvucci ME et al (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467. doi:10.1093/jxb/erq304 PubMedCrossRefGoogle Scholar
  89. Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82. doi:10.1016/j.ympev.2006.01.023 PubMedCrossRefGoogle Scholar
  90. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821. doi:10.1261/rna.916708 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pont C, Murat F, Guizard S et al (2013) Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J 76:1030–1044. doi:10.1111/tpj.12366 PubMedCrossRefGoogle Scholar
  92. Qin Z, Li C, Mao L, Wu L (2014) Novel insights from non-conserved microRNAs in plants. Front Plant Sci 5:586. doi:10.3389/fpls.2014.00586 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ramalingam P, Palanichamy JK, Singh A et al (2014) Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA 20:76–87. doi:10.1261/rna.041814.113 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ruuska SA, Lewis DC, Kennedy G et al (2008) Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate reserves in reproductive stage wheat. Plant Mol Biol 66:15–32. doi:10.1007/s11103-007-9249-5 PubMedCrossRefGoogle Scholar
  95. Saintenac C, Zhang W, Salcedo A (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786. doi:10.1126/science.1239022 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sano H, Youssefian S (1994) Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci U S A 91:2582–2586PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304. doi:10.2307/2438947 CrossRefGoogle Scholar
  98. Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527. doi:10.1016/j.devcel.2005.01.018 PubMedCrossRefGoogle Scholar
  99. Singh N, Srivastava S, Sharma A (2015) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene. doi:10.1016/j.gene.2015.09.036 Google Scholar
  100. Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21:322–6. doi:10.1016/j.tig.2005.04.008 PubMedCrossRefGoogle Scholar
  101. Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sunkar R, Zhou X, Zheng Y et al (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25. doi:10.1186/1471-2229-8-25 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Teune J-H, Steger G (2010) NOVOMIR: de novo prediction of microRNA-coding regions in a single plant-genome. J Nucleic Acids. doi:10.4061/2010/495904 PubMedPubMedCentralGoogle Scholar
  104. Thakur V, Wanchana S, Xu M et al (2011) Characterization of statistical features for plant microRNA prediction. BMC Genomics 12:108. doi:10.1186/1471-2164-12-108 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Thiebaut F, Grativol C, Carnavale-Bottino M et al (2012) Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics 13:290. doi:10.1186/1471-2164-13-290 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Trindade I, Capitão C, Dalmay T et al (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716. doi:10.1007/s00425-009-1078-0 PubMedCrossRefGoogle Scholar
  107. Unver T, Budak H (2009) Conserved micrornas and their targets in model grass species Brachypodium distachyon. Planta 230:659–669. doi:10.1007/s00425-009-0974-7 PubMedCrossRefGoogle Scholar
  108. Vaughan MM, Christensen S, Schmelz EA et al (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. doi:10.1111/pce.12482 PubMedGoogle Scholar
  109. Wang X-J, Reyes JL, Chua N-H, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65. doi:10.1186/gb-2004-5-9-r65 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang M, Wang Q, Wang B (2012) Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). PLoS ONE. doi:10.1371/journal.pone.0033696 Google Scholar
  111. Wang J, Luo MC, Chen Z et al (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937. doi:10.1111/nph.12164 PubMedCrossRefGoogle Scholar
  112. Wei B, Cai T, Zhang R et al (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511. doi:10.1007/s10142-009-0128-9 PubMedCrossRefGoogle Scholar
  113. Wu Q, Qin H, Zhao Q, He X (2015) Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer (Review). Biomed Reports 611–616. doi: 10.3892/br.2015.477
  114. Xie F, Zhang B (2015) microRNA evolution and expression analysis in polyploidized cotton genome. Plant Biotechnol J. doi:10.1111/pbi.12295 Google Scholar
  115. Xing S, Salinas M, Höhmann S et al (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950. doi:10.1105/tpc.110.079343 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yan Y, Wang H, Hamera S et al (2014) MiR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78:44–55. doi:10.1111/tpj.12446 PubMedCrossRefGoogle Scholar
  117. Yang C-Y, Chen Y-C, Jauh GY, Wang C-S (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–846. doi:10.1104/pp.105.065458 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yao C, Zhao B, Li W et al (2007) Cloning of novel repeat-associated small RNAs derived from hairpin precursors in Oryza sativa. Acta Biochim Biophys Sin Shanghai 39:829–34. doi:10.1111/j.1745-7270.2007.00346.x PubMedCrossRefGoogle Scholar
  119. Yu M, Carver BF, Yan L (2014) TamiR1123 originated from a family of miniature inverted-repeat transposable elements (MITE) including one inserted in the Vrn-A1a promoter in wheat. Plant Sci 215–216:117–123. doi:10.1016/j.plantsci.2013.11.007 PubMedCrossRefGoogle Scholar
  120. Zaharieva M, Monneveux P (2014) Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet Resour Crop Evol 61:677–706. doi:10.1007/s10722-014-0084-7 CrossRefGoogle Scholar
  121. Zanca AS, Vicentini R, Ortiz-Morea FA et al (2010) Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biol 10:260. doi:10.1186/1471-2229-10-260 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang BH, Pan XP, Wang QL et al (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360. doi:10.1038/sj.cr.7290302 PubMedCrossRefGoogle Scholar
  123. Zhang B, Pan X, Cannon CH et al (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259. doi:10.1111/j.1365-313X.2006.02697.x PubMedCrossRefGoogle Scholar
  124. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289PubMedCrossRefGoogle Scholar
  125. Zhang L, Chia JM, Kumari S et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5, e1000716. doi:10.1371/journal.pgen.1000716 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhou X, Wang G, Sutoh K et al (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta - Gene Regul Mech 1779:780–788. doi:10.1016/j.bbagrm.2008.04.005 CrossRefGoogle Scholar
  127. Zhou L, Liu Y, Liu Z et al (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168. doi:10.1093/jxb/erq237 PubMedCrossRefGoogle Scholar
  128. Zhu C, Ding Y, Liu H (2011a) MiR398 and plant stress responses. Physiol Plant 143:1–9. doi:10.1111/j.1399-3054.2011.01477.x PubMedCrossRefGoogle Scholar
  129. Zhu S, Jiang Q, Wang G et al (2011b) Chromatin structure characteristics of pre-miRNA genomic sequences. BMC Genomics 12:329. doi:10.1186/1471-2164-12-329 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Molecular Biology, Genetics and Bioengineering ProgramSabanci UniversityIstanbulTurkey
  2. 2.Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanUSA

Personalised recommendations