Advertisement

Functional & Integrative Genomics

, Volume 15, Issue 5, pp 511–522 | Cite as

Genome-wide identification and characterization of Fox genes in the silkworm, Bombyx mori

  • JiangBo Song
  • ZhiQuan Li
  • XiaoLing Tong
  • Cong Chen
  • Min Chen
  • Gang Meng
  • Peng Chen
  • ChunLin Li
  • YaQun Xin
  • TingTing Gai
  • FangYin Dai
  • Cheng Lu
Review

Abstract

The forkhead box (Fox) transcription factor family has a characteristic of forkhead domain, a winged DNA-binding domain. The Fox genes have been classified into 23 subfamilies, designated FoxA to FoxS, of which the FoxR and FoxS subfamilies are specific to vertebrates. In this review, using whole-genome scanning, we identified 17 distinct Fox genes distributed on 13 chromosomes of the silkworm, Bombyx mori. A phylogenetic tree showed that the silkworm Fox genes could be classified into 13 subfamilies. The FoxK subfamily is specifically absent from the silkworm, although it is present in other lepidopteran insects, including Danaus plexippus and Heliconius melpomene. Microarray data revealed that the Fox genes have distinct expression patterns in the tissues on day 3 of the 5th instar larva. A Gene Ontology analysis suggested that the Fox genes have roles in cellular components, molecular functions, and biological processes, except in pore complex biogenesis. An analysis of the selective pressure on the proteins indicated that most of the amino acid sites in the Fox proteins are undergoing strong purifying selection. Here, we summarize the general characteristics of the Fox genes in the silkworm, which should support further functional studies of the silkworm Fox proteins.

Keywords

Fox genes Genome Identification Characterization Bombyx mori 

Abbreviations

EST

Expressed sequence tag

Fox

Forkhead box

GO

Gene Ontology

A/MSG

Anterior/middle silk gland

PSG

Posterior silk gland

Notes

Acknowledgments

This work was funded by grants from the Hi-Tech Research and Development 863 Program of China Grant (No. 2013AA102507), the National Natural Science Foundation of China (No. 31072088), and the Fundamental Research Funds for the Central Universities in China (No.XDJK2013A001).

Competing interests

The authors declare that they have no competing interests. All authors have read and approved the final manuscript.

Supplementary material

10142_2015_440_MOESM1_ESM.pdf (119 kb)
Supplementary Table 1 (PDF 118 kb)
10142_2015_440_MOESM2_ESM.pdf (111 kb)
Supplementary Table 2 (PDF 110 kb)
10142_2015_440_MOESM3_ESM.pdf (150 kb)
Supplementary Fig. 1 (PDF 150 kb)
10142_2015_440_MOESM4_ESM.pdf (1.1 mb)
Supplementary Fig. 2 (PDF 1149 kb)

References

  1. Adell T, Muller WE (2004) Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 334:35–46. doi: 10.1016/j.gene.2004.02.036 CrossRefPubMedGoogle Scholar
  2. Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592CrossRefPubMedGoogle Scholar
  3. Appels R, Barrero R, Bellgard M (2013) Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals. Funct Integr Genomics 13:1–9. doi: 10.1007/s10142-013-0319-2 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Appels R, Nystrom-Persson J, Keeble-Gagnere G (2014) Advances in genome studies in plants and animals. Funct Integr Genomics 14:1–9. doi: 10.1007/s10142-014-0364-5 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9, e1003941. doi: 10.1371/journal.pgen.1003941 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCentralCrossRefPubMedGoogle Scholar
  7. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B (2010) A structural classification of substrate-binding proteins. FEBS Lett 584:2606–2617. doi: 10.1016/j.febslet.2010.04.043 CrossRefPubMedGoogle Scholar
  8. Brent MM, Anand R, Marmorstein R (2008) Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16:1407–1416PubMedCentralCrossRefPubMedGoogle Scholar
  9. Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23. doi: 10.1006/dbio.2002.0780 CrossRefPubMedGoogle Scholar
  10. Casas-Tinto S, Gomez-Velazquez M, Granadino B, Fernandez-Funez P (2008) FoxK mediates TGF-β signalling during midgut differentiation in flies. J Cell Biol 183:1049–1060. doi: 10.1083/jcb.200808149 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cirillo LA, Zaret KS (2007) Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J Mol Biol 366:720–724. doi: 10.1016/j.jmb.2006.11.087 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420. doi: 10.1038/364412a0 CrossRefPubMedGoogle Scholar
  13. Coffer PJ, Burgering BMT (2004) Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4:889–899CrossRefPubMedGoogle Scholar
  14. Consortium HG (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98. doi: 10.1038/nature11041 Google Scholar
  15. DeLano W (2002) The PyMOL Molecular Graphics System, Version 1.5. 0.3. Schrödinger, LLCGoogle Scholar
  16. Doerr D, Thevenin A, Stoye J (2012) Gene family assignment-free comparative genomics. BMC Bioinforma 13(Suppl 19):S3. doi: 10.1186/1471-2105-13-S19-S3 CrossRefGoogle Scholar
  17. Doron-Faigenboim A, Stern A, Mayrose I, Bacharach E, Pupko T (2005) Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics 21:2101–2103. doi: 10.1093/bioinformatics/bti259 CrossRefPubMedGoogle Scholar
  18. Dos Santos G et al (2015) FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res 43:D690–D697PubMedCentralCrossRefPubMedGoogle Scholar
  19. Duan J et al (2010) SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res 38:D453–D456. doi: 10.1093/nar/gkp801 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Finn RD et al (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230PubMedCentralCrossRefPubMedGoogle Scholar
  21. Frelin O et al (2012) Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct Integr Genomics 12:317–326. doi: 10.1007/s10142-012-0273-4 CrossRefPubMedGoogle Scholar
  22. Fujioka M, Jaynes JB (2012) Regulation of a duplicated locus: Drosophila sloppy paired is replete with functionally overlapping enhancers. Dev Biol 362:309–319PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gao F, Chang F, Shen J, Shi F, Xie L, Zhan J (2014) Complete genome analysis of a novel recombinant isolate of potato virus Y from China. Arch Virol 159:3439–3442. doi: 10.1007/s00705-014-2184-2 CrossRefPubMedGoogle Scholar
  24. Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100. doi: 10.1146/annurev.ento.50.071803.130456 CrossRefPubMedGoogle Scholar
  25. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240. doi: 10.1038/nrg2523 PubMedCentralCrossRefPubMedGoogle Scholar
  26. He J, Shi TY, Zhu ML, Wang MY, Li QX, Wei QY (2013) Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: a meta-analysis. Int J Cancer 133:1765–1775. doi: 10.1002/ijc.28089 CrossRefPubMedGoogle Scholar
  27. Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. doi: 10.1093/bioinformatics/btu817
  28. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682PubMedCentralCrossRefPubMedGoogle Scholar
  29. Jackson BC, Carpenter C, Nebert DW, Vasiliou V (2010) Update of human and mouse forkhead box (FOX) gene families. Hum Genomics 4:345PubMedCentralPubMedGoogle Scholar
  30. Jin C, Marsden I, Chen X, Liao X (1999) Dynamic DNA contacts observed in the NMR structure of winged helix protein–DNA complex. J Mol Biol 289:683–690. doi: 10.1006/jmbi.1999.2819 CrossRefPubMedGoogle Scholar
  31. Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20CrossRefPubMedGoogle Scholar
  32. Kim D et al (2015) The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 16:1–14. doi: 10.1007/s10522-014-9519-y CrossRefPubMedGoogle Scholar
  33. Koga H et al (2013) A genome-wide survey of genes encoding transcription factors in Japanese pearl oyster Pinctada fucata: II. Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc fingers. Zool Sci 30:858–867. doi: 10.2108/zsj.30.858 CrossRefPubMedGoogle Scholar
  34. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490CrossRefPubMedGoogle Scholar
  35. Lee HH, Frasch M (2004a) Survey of forkhead domain encoding genes in the Drosophila genome: classification and embryonic expression patterns. Dev Dyn 229:357–366. doi: 10.1002/dvdy.10443 CrossRefPubMedGoogle Scholar
  36. Lee HH, Frasch M (2004b) Survey of forkhead domain encoding genes in the Drosophila genome: classification and embryonic expression patterns. Dev Dyn 229:357–366CrossRefPubMedGoogle Scholar
  37. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647. doi: 10.1126/science.1083614 CrossRefPubMedGoogle Scholar
  38. Li Y et al (2012) Transcriptome analysis of the silkworm (Bombyx mori) by high-throughput RNA sequencing. PLoS One 7, e43713. doi: 10.1371/journal.pone.0043713 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Mach V, Takiya S, Ohno K, Handa H, Imai T, Suzuki Y (1995) Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem 270:9340–9346CrossRefPubMedGoogle Scholar
  40. Mazet F, Yu J-K, Liberles DA, Holland LZ, Shimeld SM (2003) Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 316:79–89. doi: 10.1016/s0378-1119(03)00741-8 CrossRefPubMedGoogle Scholar
  41. Meng G, Dai F, Tong X, Li N, Ding X, Song J, Lu C (2014) Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes. Mol Genet Genomics. doi: 10.1007/s00438-014-0958-6
  42. Mita K et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35CrossRefPubMedGoogle Scholar
  43. Mondal S, Ivanchuk SM, Rutka JT, Boulianne GL (2007) Sloppy paired 1/2 regulate glial cell fates by inhibiting Gcm function. Glia 55:282–293CrossRefPubMedGoogle Scholar
  44. Monsalve M, Olmos Y (2011) The complex biology of FOXO. Curr Drug Targets 12:1322–1350CrossRefPubMedGoogle Scholar
  45. Rho HK, McClay DR (2011) The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. Development 138:937–945PubMedCentralCrossRefPubMedGoogle Scholar
  46. Shen EZ et al (2014) Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature 508:128–132. doi: 10.1038/nature13012 CrossRefPubMedGoogle Scholar
  47. Shimeld SM, Boyle MJ, Brunet T, Luke GN, Seaver EC (2010a) Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. Dev Biol 340:234–248. doi: 10.1016/j.ydbio.2010.01.015 CrossRefPubMedGoogle Scholar
  48. Shimeld SM, Degnan B, Luke GN (2010b) Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 95:256–260. doi: 10.1016/j.ygeno.2009.08.002 CrossRefPubMedGoogle Scholar
  49. Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35:W506–W511. doi: 10.1093/nar/gkm382 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Tsai KL, Huang CY, Chang CH, Sun YJ, Chuang WJ, Hsiao CD (2006) Crystal structure of the human FOXK1a–DNA complex and its implications on the diverse binding specificity of winged helix/forkhead proteins. J Biol Chem 281:17400–17409. doi: 10.1074/jbc.M600478200 CrossRefPubMedGoogle Scholar
  51. Tuteja G, Kaestner KH (2007) SnapShot: forkhead transcription factors I. Cell 130:1160. doi: 10.1016/j.cell.2007.09.005 CrossRefPubMedGoogle Scholar
  52. Weigel D, Jäckle H (1990) The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456. doi: 10.1016/0092-8674(90)90439-L CrossRefPubMedGoogle Scholar
  53. Wotton KR, Mazet F, Shimeld SM (2008) Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for Fox genes in vertebrate development. Dev Dyn 237:1590–1603CrossRefPubMedGoogle Scholar
  54. Xia Q et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940CrossRefPubMedGoogle Scholar
  55. Xia Q et al (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol 8:R162. doi: 10.1186/gb-2007-8-8-r162 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Xia Q et al (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–436PubMedCentralCrossRefPubMedGoogle Scholar
  57. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917CrossRefPubMedGoogle Scholar
  58. Ye J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297PubMedCentralCrossRefPubMedGoogle Scholar
  59. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977–987CrossRefPubMedGoogle Scholar
  60. Yu JK, Mazet F, Chen YT, Huang SW, Jung KC, Shimeld SM (2008) The Fox genes of Branchiostoma floridae. Dev Genes Evol 218:629–638. doi: 10.1007/s00427-008-0229-9 CrossRefPubMedGoogle Scholar
  61. Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147:1171–1185PubMedCentralCrossRefPubMedGoogle Scholar
  62. Zhang Y, Gan B, Liu D, Paik J-H (2011) FoxO family members in cancer. Cancer Biol Ther 12:253–259. doi: 10.4161/cbt.12.4.15954 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • JiangBo Song
    • 1
    • 2
  • ZhiQuan Li
    • 1
    • 2
  • XiaoLing Tong
    • 1
    • 2
  • Cong Chen
    • 1
    • 2
  • Min Chen
    • 1
    • 2
  • Gang Meng
    • 1
    • 2
  • Peng Chen
    • 1
    • 2
  • ChunLin Li
    • 1
    • 2
  • YaQun Xin
    • 1
    • 2
  • TingTing Gai
    • 1
    • 2
  • FangYin Dai
    • 1
    • 2
  • Cheng Lu
    • 1
    • 2
  1. 1.State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingChina
  2. 2.Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural MinistrySouthwest UniversityChongqingChina

Personalised recommendations