Functional & Integrative Genomics

, Volume 15, Issue 4, pp 439–447 | Cite as

Whole transcriptome responses among females of the filariasis and arbovirus vector mosquito Culex pipiens implicate TGF-β signaling and chromatin modification as key drivers of diapause induction

  • Paul V. Hickner
  • Akio Mori
  • Erliang Zeng
  • John C. Tan
  • David W. Severson
Original Paper


Culex pipiens mosquitoes are important disease vectors inhabiting temperate zones, worldwide. The seasonal reduction in temperature and photoperiod accompanying late summer and early fall prompts female mosquitoes to enter diapause, a stage of developmental arrest and physiological conditioning that enhances survival during the winter months. To investigate the molecular mechanisms underlying diapause induction, we used custom whole transcriptome microarrays to identify differences in gene expression following exposure to nondiapause (long days, 25 °C) and diapause-inducing (short days, 18 °C) environmental conditions. Using a two-way ANOVA, we identified 1130 genes that were differentially expressed. We used the expression of these genes across three time points to construct a gene co-expression network comprising five modules. Genes in modules 1, 2, and 3 were largely up-regulated, while genes in modules 4 and 5 were down-regulated when compared to nondiapause conditions. Pathway enrichment analysis of the network modules revealed some potential regulatory mechanisms driving diapause induction. Module 1 was enriched for genes in the TGF-ß and Wnt signaling pathways; module 2 was enriched for genes involved in insect hormone biosynthesis, specifically, ecdysone synthesis; module 3 was enriched for genes involved in chromatin modification; and module 5 was enriched for genes in the circadian rhythm pathway. Our results suggest that TGF-β signaling and chromatin modification are key drivers for the integration of environmental signals into the diapause induction phase in C. pipiens mosquitoes.


House mosquito Gene network Overwintering Seasonality Gene regulation 



We thank Ryan Hemme for collecting the larvae used in establishment of the C. pipiens South Bend strain. We also thank Melissa Stephens in the University of Notre Dame Genomics Core Facility for processing the microarrays. This work was supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (RO1-AI079125-A1) to D.W.S.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10142_2015_432_Fig5_ESM.gif (10 kb)

(GIF 9 kb)

10142_2015_432_MOESM1_ESM.tif (255 kb)
High resolution image (TIFF 254 kb)
10142_2015_432_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 14 kb)


  1. Ahringer J (2000) NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16:351–356PubMedCrossRefGoogle Scholar
  2. Arensburger P, Megy K, Waterhouse RM et al (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88PubMedCentralPubMedCrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57:289–300Google Scholar
  4. Benoit JB, Denlinger DL (2007) Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J Exp Biol 210:217–226PubMedCrossRefGoogle Scholar
  5. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMedCrossRefGoogle Scholar
  6. Bünning E (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 54:590–607Google Scholar
  7. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122PubMedCrossRefGoogle Scholar
  8. Eldridge BF (1968) The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of the Culex pipiens complex. Am J Trop Med Hyg 17:133–140PubMedGoogle Scholar
  9. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538PubMedCrossRefGoogle Scholar
  10. Harb M, Faris R, Gad AM, Hafez ON, Ramzy R, Buck AA (1993) The resurgence of lymphatic filariasis in the Nile delta. B World Health Organ 71:49–54Google Scholar
  11. Inoue T, Thomas JH (2000) Targets of TGF-b signaling in Caenorhabditis elegans dauer formation. Dev Biol 217:192–204PubMedCrossRefGoogle Scholar
  12. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205PubMedCentralPubMedCrossRefGoogle Scholar
  14. Kang DS, Denlinger DL, Sim C (2014) Suppression of allatotropin simulates reproductive diapause in the mosquito Culex pipiens 64: 48–53Google Scholar
  15. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559CrossRefGoogle Scholar
  16. Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialanas E et al (2009) VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37:583–587CrossRefGoogle Scholar
  17. Mattingly PF, Rozeboom LE, Knight KL, Laven H, Drummond FH, Christophers SR, Shute PG (1951) The Culex pipiens complex. Trans R Ent Soc Lond 102:331–382CrossRefGoogle Scholar
  18. Mitchell CJ (1983) Differentiation of host-seeking behavior from blood-feeding behavior in overwintering Culex pipiens (Diptera: Culicidae) and observations on gonotrophic dissociation. J Med Entomol 20:157–163PubMedCrossRefGoogle Scholar
  19. Ng H-H, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25:121–126PubMedCrossRefGoogle Scholar
  20. Nguyen M, Parker L, Arora K (2000) Identification of maverick, a novel member of the TGF-β superfamily in Drosophila. Mech Develop 95:201–206CrossRefGoogle Scholar
  21. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555PubMedCrossRefGoogle Scholar
  22. Rhinehart JP, Robich RM, Denlinger DL (2006) Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J Med Entomol 43:713–722CrossRefGoogle Scholar
  23. Robich RM, Denlinger DL (2005) Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. PNAS 102:15912–15917PubMedCentralPubMedCrossRefGoogle Scholar
  24. Robich RM, Rinehart JP, Kitchen LJ, Denlinger DL (2007) Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J Insect Physiol 53:235–245PubMedCentralPubMedCrossRefGoogle Scholar
  25. Schuettengruber B, Martinez A-M, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Bio 12:799–814CrossRefGoogle Scholar
  26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCentralPubMedCrossRefGoogle Scholar
  27. Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ (2009) Polycomb repressive complex 2 and trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci U S A 107:169–174PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sim C, Denlinger DL (2008) Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. PNAS 105:6777–6781PubMedCentralPubMedCrossRefGoogle Scholar
  29. Sim C, Denlinger DL (2009) A shut-down in expression of an insulin-like peptide, ILP-1, halts ovarian maturation during the overwintering diapause of the mosquito Culex pipiens. Insect Mol Bio 18:325–332CrossRefGoogle Scholar
  30. Sim C, Denlinger DL (2013) Insulin signaling and the regulation of insect diapause. Front Physiol 4:189PubMedCentralPubMedCrossRefGoogle Scholar
  31. Smoot M, Ono K, Johannes Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedCentralPubMedCrossRefGoogle Scholar
  32. Spielman A (1974) Effect of synthetic juvenile hormone on ovarian diapause of Culex pipiens mosquitoes. J Med Entomol 11:223–225PubMedCrossRefGoogle Scholar
  33. Spielman A, Wong J (1973) Environmental control of ovarian diapause in Culex pipiens. Ann Entomol Soc Am 66:905–907CrossRefGoogle Scholar
  34. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208PubMedCrossRefGoogle Scholar
  35. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74PubMedCentralPubMedCrossRefGoogle Scholar
  36. Vinogradova EB (2000) Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Pensoft, SofiaGoogle Scholar
  37. Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41:W77–W83PubMedCentralPubMedCrossRefGoogle Scholar
  38. Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41:D358–D365PubMedCentralPubMedCrossRefGoogle Scholar
  39. Zhang B, Kirov SA, Snoddy JR (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Paul V. Hickner
    • 1
  • Akio Mori
    • 1
  • Erliang Zeng
    • 2
  • John C. Tan
    • 1
  • David W. Severson
    • 1
  1. 1.Eck Institute for Global Health and Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Department of Computer Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations