Advertisement

Functional & Integrative Genomics

, Volume 14, Issue 2, pp 275–283 | Cite as

Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans

  • Won Gi Yoo
  • Joon Ha Lee
  • Younhee Shin
  • Jae-Young Shim
  • Myunghee Jung
  • Byeong-Chul Kang
  • Jaedon Oh
  • Jiyeon Seong
  • Hak Kyo Lee
  • Hong Sik Kong
  • Ki-Duk Song
  • Eun-Young Yun
  • In-Woo Kim
  • Young-Nam Kwon
  • Dong Gun Lee
  • Ui-Wook Hwang
  • Junhyung ParkEmail author
  • Jae Sam HwangEmail author
Original Paper

Abstract

The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

Keywords

RNA-seq Physicochemical properties Antimicrobial peptide Scolopendra subspinipes mutilans 

Notes

Acknowledgment

This work was supported by a grant from the Next-Generation BioGreen 21 Program (no. PJ008158, PJ008196), Rural Development Administration, Republic of Korea.

References

  1. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112PubMedGoogle Scholar
  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi: 10.1038/nrmicro1098 PubMedCrossRefGoogle Scholar
  3. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11PubMedCrossRefGoogle Scholar
  4. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184PubMedCrossRefGoogle Scholar
  5. Chen CY (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6(1):e15939. doi: 10.1371/journal.pone.0015939 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinforma 8:65. doi: 10.1186/1471-2105-8-65 CrossRefGoogle Scholar
  7. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306. doi: 10.1038/nbt1012 PubMedCrossRefGoogle Scholar
  8. Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51. doi: 10.1038/nrd3591 Google Scholar
  9. Gaudet P, Lane L, Fey P, Bridge A, Poux S, Auchincloss A, Axelsen K, Braconi Quintaje S, Boutet E, Brown P, Coudert E, Datta RS, de Lima WC, de Oliveira Lima T, Duvaud S, Farriol-Mathis N, Ferro Rojas S, Feuermann M, Gateau A, Hinz U, Hulo C, James J, Jimenez S, Jungo F, Keller G, Lemercier P, Lieberherr D, Moinat M, Nikolskaya A, Pedruzzi I, Rivoire C, Roechert B, Schneider M, Stanley E, Tognolli M, Sjolander K, Bougueleret L, Chisholm RL, Bairoch A (2009) Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase. Database: J Biol Databases Curation 2009:bap016. doi: 10.1093/database/bap016
  10. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. doi: 10.1038/nbt.1883 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22. doi: 10.1186/1471-2180-10-22 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hilpert K, Volkmer-Engert R, Walter T, Hancock RE (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23(8):1008–1012. doi: 10.1038/nbt1113 PubMedCrossRefGoogle Scholar
  13. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Proceedings/International Conference on Intelligent Systems for Molecular Biology; ISMB International Conference on Intelligent Systems for Molecular Biology: 138–148Google Scholar
  14. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi: 10.1128/CMR.00056-05 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Jenuth JP (2000) The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol 132:301–312PubMedGoogle Scholar
  16. Menousek J, Mishra B, Hanke ML, Heim CE, Kielian T, Wang G (2012) Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int J Antimicrob Agents 39(5):402–406. doi: 10.1016/j.ijantimicag.2012.02.003 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Oh C, Deung M, Kang B, Shin M, Lee J (2002) Medicinal animal science. Uisungdang, SeoulGoogle Scholar
  18. Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H (2010) Two novel antimicrobial peptides from centipede venoms. Toxicon Off J Int Soc Toxicol 55(2–3):274–279. doi: 10.1016/j.toxicon.2009.07.040 CrossRefGoogle Scholar
  19. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652PubMedCrossRefGoogle Scholar
  20. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16(6):276–277PubMedCrossRefGoogle Scholar
  21. Seebah S, Suresh A, Zhuo S, Choong YH, Chua H, Chuon D, Beuerman R, Verma C (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35(Database issue):D265–D268PubMedCentralPubMedCrossRefGoogle Scholar
  22. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236–248. doi: 10.1002/bip.10260 PubMedCrossRefGoogle Scholar
  23. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679. doi: 10.1128/AAC.48.12.4673-4679.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38(Database issue):D774–D780. doi: 10.1093/nar/gkp1021 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Torrent M, Nogues VM, Boix E (2009) A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinforma 10:373. doi: 10.1186/1471-2105-10-373 CrossRefGoogle Scholar
  26. Torrent M, Andreu D, Nogues VM, Boix E (2011a) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6(2):e16968. doi: 10.1371/journal.pone.0016968 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Torrent M, Pulido D, de la Torre BG, Garcia-Mayoral MF, Nogues MV, Bruix M, Andreu D, Boix E (2011b) Refining the eosinophil cationic protein antibacterial pharmacophore by rational structure minimization. J Med Chem 54(14):5237–5244. doi: 10.1021/jm200701g PubMedCrossRefGoogle Scholar
  28. Torrent M, Di Tommaso P, Pulido D, Nogues MV, Notredame C, Boix E, Andreu D (2012) AMPA: an automated Web server for prediction of protein antimicrobial regions. Bioinformatics 28(1):130–131. doi: 10.1093/bioinformatics/btr604 PubMedCrossRefGoogle Scholar
  29. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(Database issue):D933–D937. doi: 10.1093/nar/gkn823 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y (2006) Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J Biochem Biophys 43(2):88–93PubMedGoogle Scholar
  31. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. doi: 10.1124/pr.55.1.2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Won Gi Yoo
    • 1
  • Joon Ha Lee
    • 2
  • Younhee Shin
    • 1
  • Jae-Young Shim
    • 1
  • Myunghee Jung
    • 1
  • Byeong-Chul Kang
    • 1
  • Jaedon Oh
    • 5
  • Jiyeon Seong
    • 5
  • Hak Kyo Lee
    • 5
  • Hong Sik Kong
    • 5
  • Ki-Duk Song
    • 5
  • Eun-Young Yun
    • 2
  • In-Woo Kim
    • 2
  • Young-Nam Kwon
    • 2
  • Dong Gun Lee
    • 3
  • Ui-Wook Hwang
    • 4
  • Junhyung Park
    • 1
    Email author
  • Jae Sam Hwang
    • 2
    Email author
  1. 1.Codes DivisionInsilicogen, Inc.SuwonSouth Korea
  2. 2.Department of Agricultural Biology, National Academy of Agricultural ScienceRural Development AdministrationSuwonSouth Korea
  3. 3.School of Life Sciences and Biotechnology, College of Natural SciencesKyungpook National UniversityBuk-guSouth Korea
  4. 4.Department of Biology, Teachers College, Institute for Phylogenomics and EvolutionKyungpook National UniversityDaeguSouth Korea
  5. 5.Genomic Informatics CenterHankyong National UniversityGyeonggi-doSouth Korea

Personalised recommendations