Functional & Integrative Genomics

, Volume 14, Issue 2, pp 363–379 | Cite as

New wheat microRNA using whole-genome sequence

  • Kuaybe Yucebilgili Kurtoglu
  • Melda Kantar
  • Hikmet Budak
Original Paper


MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation.


Triticum aestivum MicroRNA MicroRNA prediction Next-generation sequencing Real-time quantitative reverse transcription PCR 





Primary miRNA


Precursor miRNA


RNA-induced silencing complex


Support vector machine


Expressed sequence tag


Low copy number assembly


Triticeae repeat database


Orthologous group assembly


Orthologous group representatives


Complementary DNA


Minimal folding free energy


Miniature inverted terminal repeat element


Transposable element-related miRNA group


Gene expression omnibus


Terminal inverted repeat


Long terminal repeat


Small interfering RNA



The authors are grateful to Dr. Rachel Brenchley and her collegues (Centre for Genome Research, University of Liverpool, UK) for use of the 5× coverage wheat genome assemblies and the transcriptome assembly.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments comply with the current laws of the country in which they were performed.

Supplementary material

10142_2013_357_MOESM1_ESM.pdf (88 kb)
Table S1 (.xls) Primer Sequences Used in This Study List of all primers used in this study (PDF 87.6 kb)
10142_2013_357_MOESM2_ESM.pdf (129 kb)
Table S2 (.xls) Repeat Elements Found in Putative miRNA-Coding Regions List of repeat elements found to be present in stem-loop coding regions (RepeatMasker data) (PDF 129 kb)
10142_2013_357_MOESM3_ESM.pdf (25 kb)
Table S3 (.xls) miRNAs and miRNA*s Expressed by Evidence of Small RNA Library Blast Search Results of in silico small RNA library search of predicted miRNA-coding stem-loops (PDF 24.7 KB)


  1. An FM, Hsiao SR, Chan MT (2011) Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in phalaenopsis orchid. PLoS One 6(5):e18937. doi: 10.1371/journal.pone.0018937 PubMedCrossRefPubMedCentralGoogle Scholar
  2. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-050312-120043 PubMedGoogle Scholar
  3. Baev V, Milev I, Naydenov M, Apostolova E, Minkov G, Minkov I, Yahubyan G (2011) Implementation of a de novo genome-wide computational approach for updating Brachypodium miRNAs. Genomics 97(5):282–293. doi: 10.1016/j.ygeno.2011.02.008 PubMedCrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  5. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247. doi: 10.1261/rna.7240905 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Briere C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J. doi: 10.1111/tpj.12178 PubMedGoogle Scholar
  7. Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inzé D, Pè ME, Mica E (2012) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant. doi: 10.1093/mp/sss160 PubMedCentralGoogle Scholar
  8. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710. doi: 10.1038/nature11650 PubMedCrossRefPubMedCentralGoogle Scholar
  9. Budak H, Akpinar A (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS: J Integr Biol 15(11):791–799CrossRefGoogle Scholar
  10. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST plus: architecture and applications. BMC Bioinformatics 10. doi: 10.1186/1471-2105-10-421
  11. Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408. doi: 10.1186/1471-2164-11-408 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in the cereals. Chrom Res 15(1):51–66. doi: 10.1007/s10577-006-1106-x PubMedCrossRefGoogle Scholar
  13. Dryanova A, Zakharov A, Gulick PJ (2008) Data mining for miRNAs and their targets in the Triticeae. Genome 51(6):433–443. doi: 10.1139/G08-025 PubMedGoogle Scholar
  14. Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7(5):512–520. doi: 10.1016/j.pbi.2004.07.011 PubMedCrossRefGoogle Scholar
  15. Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 7(10):e46703PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231(5):991–1001. doi: 10.1007/s00425-010-1104-2 PubMedCrossRefGoogle Scholar
  17. Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195(4):766–773. doi: 10.1111/j.1469-8137.2012.04259.x PubMedCrossRefGoogle Scholar
  18. Gupta OP, Permar V, Koundal V, Singh UD, Praveen S (2012) MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection. Mol Biol Rep 39(2):817–824. doi: 10.1007/s11033-011-0803-5 PubMedCrossRefGoogle Scholar
  19. Hernandez P, Martis M, Dorado G, Pfeifer M, Galvez S, Schaaf S, Jouve N, Simkova H, Valarik M, Dolezel J, Mayer KF (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69(3):377–386. doi: 10.1111/j.1365-313X.2011.04808.x PubMedCrossRefGoogle Scholar
  20. Hewezi T, Howe P, Maier TR, Baum TJ (2008) Arabidopsis small RNAs and their targets during cyst nematode parasitism. Mol Plant-Microbe Interact: MPMI 21(12):1622–1634. doi: 10.1094/MPMI-21-12-1622 PubMedCrossRefGoogle Scholar
  21. Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159(1):321–335. doi: 10.1104/pp. 112.193649 PubMedCrossRefPubMedCentralGoogle Scholar
  22. Jin W, Li N, Zhang B, Wu F, Li W, Guo A, Deng Z (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121(3):351–355. doi: 10.1007/s10265-007-0139-3 PubMedCrossRefGoogle Scholar
  23. Jones-Rhoades MW (2010) Prediction of plant miRNA genes. Methods Mol Biol 592:19–30. doi: 10.1007/978-1-60327-005-2_2 PubMedCrossRefGoogle Scholar
  24. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol 57(1):19–53. doi: 10.1146/annurev.arplant.57.032905.105218 CrossRefGoogle Scholar
  25. Kadri S, Hinman V, Benos P (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinforma 10(Suppl 1):S35CrossRefGoogle Scholar
  26. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10(4):493–507. doi: 10.1007/s10142-010-0181-4 PubMedCrossRefGoogle Scholar
  27. Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233(3):471–484. doi: 10.1007/s00425-010-1309-4 PubMedCrossRefGoogle Scholar
  28. Kantar M, Akpinar BA, Valarik M, Lucas SJ, Dolezel J, Hernandez P, Budak H, International Wheat Genome Sequencing C (2012) Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics 12(3):465–479. doi: 10.1007/s10142-012-0285-0 PubMedCrossRefGoogle Scholar
  29. Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188(2):263–272. doi: 10.1534/genetics.111.128348 PubMedCrossRefPubMedCentralGoogle Scholar
  30. Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) - Gene Reg Mech 1819(2):137–148. doi: 10.1016/j.bbagrm.2011.05.001 CrossRefGoogle Scholar
  31. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. doi: 10.1093/nar/gkq1027 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kubalakova M, Vrana J, Cihalikova J, Simkova H, Dolezel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104(8):1362–1372. doi: 10.1007/s00122-002-0888-2 PubMedCrossRefGoogle Scholar
  33. Kurtoglu KYKM, Lucas SJ, Budak H (2013) Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS ONE 8(7):e69801PubMedCrossRefPubMedCentralGoogle Scholar
  34. Li A, Mao L (2007) Evolution of plant microRNA gene families. Cell Res 17(3):212–218. doi: 10.1038/ PubMedGoogle Scholar
  35. Li Y, Li C, Xia J, Jin Y (2011) Domestication of transposable elements into microRNA genes in plants. PLoS ONE 6(5):e19212. doi: 10.1371/journal.pone.0019212 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Li Y-F, Zheng Y, Jagadeeswaran G, Sunkar R (2013) Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. Plant Sci 203–204:17–24. doi: 10.1016/j.plantsci.2012.12.014 PubMedCrossRefGoogle Scholar
  37. Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236. doi: 10.1111/j.1399-3054.2009.01229.x PubMedCrossRefGoogle Scholar
  38. Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 7(6):e39786. doi: 10.1371/journal.pone.0039786 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056. doi: 10.1126/science.1076311 PubMedCrossRefGoogle Scholar
  40. Lucas SJ, Budak H (2012) Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One 7(7):e40859. doi: 10.1371/journal.pone.0040859 PubMedCrossRefPubMedCentralGoogle Scholar
  41. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. doi: 10.1007/978-1-60327-429-6_1 PubMedCrossRefGoogle Scholar
  42. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20(12):3186–3190. doi: 10.1105/tpc.108.064311 PubMedCrossRefPubMedCentralGoogle Scholar
  43. Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A (2012) Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One 7(12):e50261. doi: 10.1371/journal.pone.0050261 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P (2013) Identification of new stress-induced microRNA and their targets in wheat using computational approach. Plant Signal Behav 8(5):e23932PubMedCrossRefPubMedCentralGoogle Scholar
  45. Pantaleo V (2011) Plant RNA silencing in viral defence. Adv Exp Med Biol 722:39–58. doi: 10.1007/978-1-4614-0332-6_3 PubMedCrossRefGoogle Scholar
  46. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102(10):3691–3696. doi: 10.1073/pnas.0405570102 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Quantification of multiple gene expression in individual cells. Genome Res 14(10A):1938–1947. doi: 10.1101/gr.2890204 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821. doi: 10.1261/rna.916708 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Piriyapongsa J, Mariño-Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176(2):1323–1337. doi: 10.1534/genetics.107.072553 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626. doi: 10.1101/gad.1004402 PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45. doi: 10.1093/nar/gkp045 PubMedCrossRefPubMedCentralGoogle Scholar
  52. Schreiber A, Shi B-J, Huang C-Y, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12(1):129PubMedCrossRefPubMedCentralGoogle Scholar
  53. Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159(2):721–738. doi: 10.1104/pp. 112.196048 PubMedCrossRefPubMedCentralGoogle Scholar
  54. Teune J-H, Steger G (2010) NOVOMIR: de novo prediction of microRNA-coding regions in a single plant-genome. Journal of nucleic acids 2010. doi: 10.4061/2010/495904
  55. Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230(4):659–669. doi: 10.1007/s00425-009-0974-7 PubMedCrossRefGoogle Scholar
  56. Unver T, Namuth-Covert DM, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. Int J Plant Gen. doi: 10.1155/2009/262463 Google Scholar
  57. Varkonyi-Gasic E, Wu R, Wood M, Walton E, Hellens R (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1):12PubMedCrossRefPubMedCentralGoogle Scholar
  58. Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, Colaiacovo M, Faccioli P, Lamontanara A, Simkova H, Kubalakova M, Perrotta G, Facella P, Lopez L, Pietrella M, Gianese G, Dolezel J, Giuliano G, Cattivelli L, Valle G, Stanca AM (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6(10):e26421. doi: 10.1371/journal.pone.0026421 PubMedCrossRefPubMedCentralGoogle Scholar
  59. Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y, Vogel J, Jia J, Qi Y, Mao L (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9(4):499–511. doi: 10.1007/s10142-009-0128-9 PubMedCrossRefGoogle Scholar
  60. Wu Y, Wei B, Liu H, Li T, Rayner S (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinform 12:107. doi: 10.1186/1471-2105-12-107 CrossRefGoogle Scholar
  61. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10(1):123PubMedCrossRefPubMedCentralGoogle Scholar
  62. Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6(11):e28009. doi: 10.1371/journal.pone.0028009 PubMedCrossRefPubMedCentralGoogle Scholar
  63. Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011) PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 27(10):1368–1376. doi: 10.1093/bioinformatics/btr153 PubMedCrossRefGoogle Scholar
  64. Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17(2):312–326. doi: 10.1261/rna.2537911 PubMedCrossRefPubMedCentralGoogle Scholar
  65. Yao Y, Sun Q (2012) Exploration of small non coding RNAs in wheat (Triticum aestivum L.). Plant Mol Biol 80(1):67–73. doi: 10.1007/s11103-011-9835-4 PubMedCrossRefGoogle Scholar
  66. Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8(6):R96PubMedCrossRefPubMedCentralGoogle Scholar
  67. Yin Z, Shen F (2010) Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res 9(2):1186–1196PubMedCrossRefGoogle Scholar
  68. Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63(2):1025–1038. doi: 10.1093/jxb/err337 PubMedCrossRefPubMedCentralGoogle Scholar
  69. Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15(5):336–360. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  70. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102(4):509–519. doi: 10.1093/aob/mcn129 PubMedCrossRefPubMedCentralGoogle Scholar
  71. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168. doi: 10.1093/jxb/erq237 PubMedCrossRefGoogle Scholar
  72. Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R (2012) Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 39(9):8645–8654. doi: 10.1007/s11033-012-1719-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kuaybe Yucebilgili Kurtoglu
    • 1
  • Melda Kantar
    • 1
  • Hikmet Budak
    • 1
  1. 1.Biological Sciences and Bioengineering ProgramSabanci UniversityOrhanliTurkey

Personalised recommendations