Functional & Integrative Genomics

, Volume 14, Issue 1, pp 11–22 | Cite as

Drought stress responses in crops

  • Arun K. ShankerEmail author
  • M. Maheswari
  • S. K. Yadav
  • S. Desai
  • Divya Bhanu
  • Neha Bajaj Attal
  • B. Venkateswarlu


Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops.


Drought tolerance Climate change Transcriptome Proteome Metabolome Interactome Bioinformatics 



Abscisic acid


Late embryogenesis abundant proteins


Natural antisense transcripts


RNA interference


Reactive oxygen species


Ribulose-1, 5-bisphosphate


  1. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008), Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell & Environment 31: 325–340Google Scholar
  2. Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W (2013) Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237:771–781PubMedCrossRefGoogle Scholar
  4. Babita M, Maheswari M, Rao LM, Shanker AK, Rao DG (2010) Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids. Environ Exp Bot 69:243–249CrossRefGoogle Scholar
  5. Batlang U, Baisakh N, Ambavaram MM, Pereira A (2013) Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods Mol Biol 956:209–225PubMedCrossRefGoogle Scholar
  6. Benešová M, Holá D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, Hniličková H (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 7:e38017PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, DInze D, Pe ME, Mica E (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6:423–443PubMedCentralPubMedCrossRefGoogle Scholar
  8. Boyko A, Kovalchuk I (2013) Epigenetic modifications in plants under adverse conditions: agricultural applications. In: Plant acclimation to environmental stress. Springer, New York, pp 233–267Google Scholar
  9. Braun P, Carvunis AR, Charloteaux B, Dreze M, Ecker JR, Hill DE, Roth FP, Vidal M et al (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607CrossRefGoogle Scholar
  10. Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ (2012) Balancing metabolites in drought: the sulfur assimilation conundrum. Trends in Plant Science 18:18–29Google Scholar
  12. Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM, Domoney C (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327CrossRefGoogle Scholar
  13. Chen Z, Huang J, Muttucumaru N, Powers SJ, Halford NG (2013) Expression analysis of abscisic acid (ABA) and metabolic signaling factors in developing endosperm and embryo of barley. J Cereal Sci 58:255–262CrossRefPubMedCentralPubMedGoogle Scholar
  14. Colcombet J, Hirt H (2008), Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J 413: 217–226Google Scholar
  15. Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18PubMedCrossRefGoogle Scholar
  16. Duque L, Setter T (2013) Cassava response to water deficit in deep pots: root and shoot growth, ABA and carbohydrate reserves in stems, leaves and storage roots. Tropical Plant Biol 6:199–209CrossRefGoogle Scholar
  17. Galle A, Csiszar J, Benyo D, Laskay G, Leviczky T, Erdei L, Tari I (2013) Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses. J Plant Physiol 170:1389–1399PubMedCrossRefGoogle Scholar
  18. Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T Jr, Nogueira RM, Endres L, Menossi M (2013) Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta 237(3):783–798PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ghaffari M, Mahmoud T, Valizadeh M, Komatsu S (2013) Differential response of root proteome to drought stress in drought sensitive and tolerant sunflower inbred lines. Functional Plant Biology 40, 609–617Google Scholar
  20. González RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8(8):864–872PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, Parveen Ahmed Saikia H, Borchetia S, Kalita MC, Handique AK, Das S (2012) Identification of drought tolerant progenies in tea by gene expression analysis. Functional & integrative genomics 12:543–563CrossRefGoogle Scholar
  22. Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–51Google Scholar
  23. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nature Rev Gen 11:855–866CrossRefGoogle Scholar
  24. Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase GHR1 mediates abscisic acid and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561PubMedCentralPubMedCrossRefGoogle Scholar
  25. Iyer NJ, Tang Y, Mahalingam R (2013) Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ 36:706–720PubMedCrossRefGoogle Scholar
  26. Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388PubMedCrossRefGoogle Scholar
  27. Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh N (2012) Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional & integrative genomics 12(3):447–464CrossRefGoogle Scholar
  28. Kakumanu A, Ambavaram MR, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-seq. Plant Physiol 160:846–867PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kang Y, Udvardi M (2012) Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signaling and Behavior 7:539–543PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2011) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024Google Scholar
  31. Kottapalli KR, Rakwal R, Shibato J, Burow G, Tissues D, Burke J, Puppala N, Burow M, Payton P (2009) Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant Cell Environ 32:380–407Google Scholar
  32. Krugman T, Chagué V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B, Fahima T (2010) Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Functional & integrative genomics 10:167–186CrossRefGoogle Scholar
  33. Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A (2013) Cyclophilins: proteins in search of function. Plant Signaling Behavior 8(1):e22734PubMedCentralCrossRefPubMedGoogle Scholar
  34. Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7:449522CrossRefGoogle Scholar
  35. Lembke CG, Nishiyama J, Sato PM, de Andrade RF, Souza GM (2012) Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Mol Biol 79:461–477PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–327PubMedCrossRefGoogle Scholar
  37. Liang W, Yang B, Yu BJ, Zhou Z, Li C, Jia M, Jiang YQ (2013) Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics 14(1):392PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mandel T, Rogachev I, Venger I, Mintz-Oron S, Aharoni A, Adato A (2009) The ins and outs of tomato fruit peel metabolome. ISHS Acta Horticulturae 814:465–474Google Scholar
  39. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedCrossRefGoogle Scholar
  40. Mirzaei M, Soltani N, Sarhadi E, Pascovici D, Keighley T, Salekdeh GH, Haynes PA, Atwell BJ (2011) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358PubMedCrossRefGoogle Scholar
  41. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, Vervoort J, De Vos RC (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot 58:4131–4146PubMedCrossRefGoogle Scholar
  42. Mohammadi PP, Moieni A, Komatsu S (2012) Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids 43:2137–2152PubMedCrossRefGoogle Scholar
  43. Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174PubMedCentralPubMedCrossRefGoogle Scholar
  44. Muller T, Ensminger I, Schmid KJ (2012) A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. BMC Genomics 13:673PubMedCentralPubMedCrossRefGoogle Scholar
  45. Niu Y, Wang Y, Li P, Zhang F, Liu H, Zheng G (2012) Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. Acta Physiologiae Plantarum 35:1189–1200CrossRefGoogle Scholar
  46. Ozfidan C, Turkan I, Sekmen AH, Seckin B (2013) Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA-deficient mutant (aba2). Environ Exp Bot 86:44–51CrossRefGoogle Scholar
  47. Peng S, Jiang H, Zhang S, Chen L, Li X, Korpelainen H, Li C (2012) Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree Physiol 32:1541–1555PubMedCrossRefGoogle Scholar
  48. Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383–1396PubMedCrossRefGoogle Scholar
  49. Pizzio GA, Lesia R, Regina A, Miguel GG, Cristina Y, Ebe M, Hannes K, Armando A, Pedro LR (2013) The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiol 163: 441–455Google Scholar
  50. Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh Kumar SP (2009), MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Gene Dev 23:80–92Google Scholar
  51. Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473PubMedCrossRefGoogle Scholar
  52. Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV (2012) Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 13:680PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17:139–153PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK (2011) Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Functional & integrative genomics 11:157–178CrossRefGoogle Scholar
  55. Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Functional & integrative genomics 12:327–339CrossRefGoogle Scholar
  56. Rico L, Ogaya R, Barbeta R, Penuelas J (2013) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol. doi: 10.1111/plb.12049 Google Scholar
  57. Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci U S A 109:4181–4186PubMedCentralPubMedCrossRefGoogle Scholar
  58. Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40PubMedCrossRefGoogle Scholar
  59. Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149PubMedCrossRefGoogle Scholar
  60. Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Ronald PC (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020PubMedCentralPubMedCrossRefGoogle Scholar
  61. Shaik R, Ramakrishna W (2012) Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice. PLoS One 7(11):e49331PubMedCentralPubMedCrossRefGoogle Scholar
  62. Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383PubMedCrossRefGoogle Scholar
  63. Shanker AK, Maddaala A, Anil Kumar M, Yadav SK, Maheshwari M, Venkateswarlu B (2012) In silico targeted genome mining and comparative modelling reveals a putative protein similar to an Arabidopsis drought tolerance DNA binding transcription factor in chromosome 6 of Sorghum bicolor genome. Interdiscip Sci: Comput Life Sci 4:133–141CrossRefGoogle Scholar
  64. Singh R, Jwa NS (2013) The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. Plant Cell Rep 32:923–931PubMedCrossRefGoogle Scholar
  65. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203Google Scholar
  66. Soding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960PubMedCrossRefGoogle Scholar
  67. Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273PubMedCrossRefGoogle Scholar
  69. Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H (2013) Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 25:3785–3807PubMedCrossRefGoogle Scholar
  70. Taj G, Agarwal P, Grant M, & Kumar A (2010), MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378Google Scholar
  71. Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress‐inducible receptor‐like kinases negatively control ABA signaling in Arabidopsis. The Plant J 70:599–613Google Scholar
  72. Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M (2012) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 19:335–345PubMedCentralPubMedCrossRefGoogle Scholar
  73. Venkateswarlu B, Shanker AK (2012) Dryland agriculture: bringing resilience to crop production under changing climate. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, the Netherlands, pp 19–44CrossRefGoogle Scholar
  74. Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62(6):1951–1960PubMedCentralPubMedCrossRefGoogle Scholar
  75. Warren CR, Aranda I, Cano FJ (2012) Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8:186–200CrossRefGoogle Scholar
  76. Xu C, Huang B (2010) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 167:1477–1485Google Scholar
  77. Ye N, Jia L, Zhang J (2012) ABA signal in rice under stress conditions. Rice 5:1–9PubMedCentralCrossRefGoogle Scholar
  78. Yu S, Zhang F, Yu Y, Zhang D, Zhao X, Wang W (2012) Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Reporter 30:17–28CrossRefGoogle Scholar
  79. Zhang S, Chen L, Duan B, Korpelainen H, Li C (2012) Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. Forest Ecology Management 275:68–78CrossRefGoogle Scholar
  80. Zong W, Zhong X, You J, Xiong L (2013) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81(1–2):175–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arun K. Shanker
    • 1
    Email author
  • M. Maheswari
    • 1
  • S. K. Yadav
    • 1
  • S. Desai
    • 1
  • Divya Bhanu
    • 1
  • Neha Bajaj Attal
    • 1
  • B. Venkateswarlu
    • 2
  1. 1.Division of Crop SciencesCentral Research Institute for Dryland Agriculture (CRIDA)HyderabadIndia
  2. 2.Central Research Institute for Dryland Agriculture (CRIDA)HyderabadIndia

Personalised recommendations