Functional & Integrative Genomics

, Volume 13, Issue 3, pp 339–350 | Cite as

Conserved synteny-based anchoring of the barley genome physical map

  • Naser Poursarebani
  • Ruvini Ariyadasa
  • Ruonan Zhou
  • Daniela Schulte
  • Burkhard Steuernagel
  • Mihaela Maria Martis
  • Andreas Graner
  • Patrick Schweizer
  • Uwe Scholz
  • Klaus Mayer
  • Nils Stein
Original Paper


Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map (“genome zipper”) for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome “genome zipper” maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the “genome zipper” interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the “genome zipper” is remarkably accurate and that the “genome zipper” represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.


Barley physical map Chromosome 2H Genome zipper Anchoring Synteny 



We greatly acknowledge the excellent technical help of Jelena Perovic and Jenny Knibbiche. The work was financially supported by a grant of the German Ministry of Education and Research (BMBF) in frame of the GABI-FUTURE program (FKZ0314000, BARLEX) to NS.

Supplementary material

10142_2013_327_MOESM1_ESM.xlsx (1 mb)
Supplementary data Table 1 Barley genome zipper of chromosome 2H (Mayer et al., 2011) for which additional information containing gene model IDs along with highlighted 2HL region selected have been provided (XLSX 1058 kb)
10142_2013_327_MOESM2_ESM.docx (12 kb)
Supplementary data Table 2 Comparison of representativeness of the 14 cM interval to the entire chromosome 2H genome zipper (DOCX 11 kb)
10142_2013_327_MOESM3_ESM.xls (454 kb)
Supplementary data Table 3 Genotyping data of the genome zipper-based genetic markers on a population comprising 93 doubled haploid progeny derived from the cross cv. ‘Morex’ × cv. ‘Barke’ (Close et al. 2009) (XLSX 454 kb)
10142_2013_327_MOESM4_ESM.xlsx (18 kb)
Supplementary data Table 4 All genetic markers developed and their respective information including primer sequences, annealing temperature, polymorphism types and the restriction enzyme utilised to develop CAPS and dCAPS markers (XLSX 17.8 kb)
10142_2013_327_MOESM5_ESM.xlsx (54 kb)
Supplementary data Table 5 Markers commonly mapped in TDMs map (Potokina et al., 2008) and the barley genome zippers that were utilised for genome-wide assessment of order prediction in barley genome zippers (XLSX 54.4 kb)
10142_2013_327_MOESM6_ESM.xlsx (42 kb)
Supplementary data Table 6 Primers that were developed on the basis of barley chromosome 2H genome zipper (14 cM interval), their respective BAC clone and physical map contigs identified by PCR-based BAC library screening (XLSX 41.5 kb)


  1. Bennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS (2003) The Light Typer (TM): high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34(1288–92):1294–1295Google Scholar
  2. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The 'inner circle' of the cereal genomes. Curr Opin Plant Biol 12:119–125. doi: 10.1016/j.pbi.2008.10.011 PubMedCrossRefGoogle Scholar
  3. Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717. doi: 10.1111/j.1365-313X.2006.02991.x PubMedCrossRefGoogle Scholar
  4. Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582. doi: 10.1186/1471-2164-10-582 PubMedCrossRefGoogle Scholar
  5. Cordoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436PubMedCrossRefGoogle Scholar
  6. Doligez A, Adam-Blondon AF, Cipriani G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P, Di Gaspero G (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382. doi: 10.1007/s00122-006-0295-1 PubMedCrossRefGoogle Scholar
  7. Faris JD, Zhang ZC, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus. Funct Integr Genomics 8:149–164. doi: 10.1007/s10142-008-0073-z PubMedCrossRefGoogle Scholar
  8. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467. doi: 10.1105/Tpc.010479 PubMedCrossRefGoogle Scholar
  9. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28CrossRefGoogle Scholar
  10. Gottwald S, Stein N, Borner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436. doi: 10.1007/s00438-004-0993-9 PubMedCrossRefGoogle Scholar
  11. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an Rflp map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  12. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752. doi: 10.1038/Nature04434 PubMedCrossRefGoogle Scholar
  13. Gu YQ, Ma YQ, Huo NX, Vogel JP, You FM, Lazo GR, Nelson WM, Soderlund C, Dvorak J, Anderson OD, Luo MC (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 10:496. doi: 10.1186/1471-2164-10-496 PubMedCrossRefGoogle Scholar
  14. Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548. doi: 10.1373/clinchem.2007.088120 PubMedCrossRefGoogle Scholar
  15. Islam AKMR, Shepherd KW (2000) Isolation of a fertile wheat–barley addition line carrying the entire barley chromosome 1H. Euphytica 111:145–149CrossRefGoogle Scholar
  16. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat–barley chromosome addition lines. Heredity 46:161CrossRefGoogle Scholar
  17. Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251PubMedCrossRefGoogle Scholar
  18. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  19. Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Genetics and genomics of the Triticeae. Muehlbauer GJ, Feuillet C (eds) Springer, New York, USA, pp. 337–357Google Scholar
  20. Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng GL, Cullis C, Findlay S, Ritland CE, Bohlmann J, Ritland K et al (2009) Identification of COS markers in the Pinaceae. Tree Genetics & Genomes 5:247–255. doi: 10.1007/s11295-008-0189-2 CrossRefGoogle Scholar
  21. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176:789–800. doi: 10.1534/genetics.106.067843 PubMedCrossRefGoogle Scholar
  22. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  23. Manly KF, Cudmore RH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  24. Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Dolezel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505. doi: 10.1104/pp.109.142612 PubMedCrossRefGoogle Scholar
  25. Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi: 10.1105/tpc.110.082537 PubMedCrossRefGoogle Scholar
  26. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution—grasses, line up and form a circle. Curr Biol 5:737–739. doi: 10.1016/S0960-9822(95)00148-5 PubMedCrossRefGoogle Scholar
  27. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392PubMedCrossRefGoogle Scholar
  28. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming RG, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539PubMedGoogle Scholar
  29. Perovic D, Stein N, Zhang H, Drescher A, Prasad M, Kota R, Kopahnke D, Graner A (2004) An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Funct Integr Genomics 4:74–83. doi: 10.1007/s10142-003-0100-z PubMedCrossRefGoogle Scholar
  30. Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101. doi: 10.1111/j.1365-313X.2007.03315.x PubMedCrossRefGoogle Scholar
  31. Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice–barley micro collinearity by a transposition. Theor Appl Genet 114:1357–1365. doi: 10.1007/s00122-007-0522-4 PubMedCrossRefGoogle Scholar
  32. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484. doi: 10.1007/s10142-009-0129-8 PubMedCrossRefGoogle Scholar
  33. Schulte D, Ariyadasa R, Shi BJ, Fleury D, Saski C, Atkins M, DeJong P, Wu CC, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247. doi: 10.1186/1471-2164-12-247 PubMedCrossRefGoogle Scholar
  34. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147. doi: 10.1104/pp.108.128967 PubMedCrossRefGoogle Scholar
  35. Spearman C (2010) The proof and measurement of association between two things. Int J Epidemiol 39:1137–1150. doi: 10.1093/Ije/Dyq191 PubMedCrossRefGoogle Scholar
  36. Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosom Res 15:21–31. doi: 10.1007/s10577-006-1107-9 CrossRefGoogle Scholar
  37. Suchankova P, Kubalakova M, Kovarova P, Bartos J, Cihalikova J, Molnar-Lang M, Endo TR, Dolezel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659. doi: 10.1007/s00122-006-0329-8 PubMedCrossRefGoogle Scholar
  38. The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi: 10.1038/Nature11543 Google Scholar
  39. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:1–e5. doi: 10.1093/nar/gnh006 CrossRefGoogle Scholar
  40. Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evolutionary Biology 9: DOI:  10.1186/1471-2148-9-209
  41. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034. doi: 10.1126/science.1117619 PubMedCrossRefGoogle Scholar
  42. Vu GTH, Wicker T, Buchmann JP, Chandler PM, Matsumoto T, Graner A, Stein N (2010) Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley. Funct Integr Genomics 10:509–521. doi: 10.1007/s10142-010-0173-4 PubMedCrossRefGoogle Scholar
  43. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206. doi: 10.1186/1471-2164-7-206 PubMedCrossRefGoogle Scholar
  44. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644. doi: 10.1126/science.1094305 PubMedCrossRefGoogle Scholar
  45. You FM, Huo NX, Gu YQ, Luo MC, Ma YQ, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinforma 9:253. doi: 10.1186/1471-2105-9-253 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Naser Poursarebani
    • 1
  • Ruvini Ariyadasa
    • 1
  • Ruonan Zhou
    • 1
  • Daniela Schulte
    • 1
    • 3
  • Burkhard Steuernagel
    • 1
    • 4
  • Mihaela Maria Martis
    • 2
  • Andreas Graner
    • 1
  • Patrick Schweizer
    • 1
  • Uwe Scholz
    • 1
  • Klaus Mayer
    • 2
  • Nils Stein
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland (OT)Germany
  2. 2.Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
  3. 3.KWS SAAT AGEinbeckGermany
  4. 4.The Sainsbury LaboratoryNorwichUK

Personalised recommendations