Functional & Integrative Genomics

, Volume 13, Issue 1, pp 75–98 | Cite as

The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis

  • Lei Zhao
  • Liping Gao
  • Hongxue Wang
  • Xiaotian Chen
  • Yunsheng Wang
  • Hua Yang
  • Chaoling Wei
  • Xiaochun Wan
  • Tao Xia
Original Paper


R2R3-MYB, bHLH, and WD40 proteins have been shown to control multiple enzymatic steps in the biosynthetic pathway responsible for the production of flavonoids, important secondary metabolites in Camellia sinensis. Few related transcription factor genes have been documented. The presence of R2R3-MYB, bHLH, and WD40 were statistically and bioinformatically analyzed on 127,094 C. sinensis transcriptome unigenes, resulting in identification of 73, 49, and 134 genes, respectively. C. sinensis phylogenetic trees were constructed for R2R3-MYB and bHLH proteins using previous Arabidopsis data and further divided into 27 subgroups (Sg) and 32 subfamilies. Motifs in some R2R3-MYB subgroups were redefined. Furthermore, Sg26 and Sg27 were expanded compared to Arabidopsis data, and bHLH proteins in C. sinensis were grouped into nine subfamilies. According to the functional annotation of Arabidopsis, flavonoid biosynthesis in C. sinensis was predicted to include R2R3-MYB genes in Sg4 (6), Sg5 (2), and Sg7 (1), as well as bHLH genes in subfamily 2 (2) and subfamily 24 (5). The wide evolutionary gap prevented phylogenetic analysis of WD40s; however, a single gene, CsWD40-1, was observed to share 80.4 % sequence homogeny with AtTTG1. Analysis of CsMYB4-1, CsMYB4-2, CsMYB4-3, CsMYB4-4, CsMYB5-1, and CsMYB5-2 revealed the interaction motif [DE]Lx2[RK]x3Lx6Lx3R, potentially contributing to the specificity of the bHLH partner in the stable MYB–bHLH complex. Full-length end-to-end polymerase chain reaction (PCR) and quantitative reverse transcriptase (qRT)-PCR were used to validate selected genes and generate relative expression ratio profiles in C. sinensis leaves by developmental stage and treatment conditions, including hormone and wound treatments. Potential target binding sites were predicted.


Camellia sinensis MYB bHLH Bioinformatic analysis Flavonoid biosynthetic pathway 



This work was supported by the Natural Science Foundation of China (30972401, 31170647 and 31170282), Natural Science Foundation of Anhui Province (11040606M73), Collegiate Natural Science Foundation of Anhui Province (KJ2012A110), Program for Changjiang Scholars and Innovative Research Team in University (IRT1101), and Major Project of Chinese National Programmes for Fundamental Research and Development (2012CB722903).

Supplementary material

10142_2012_301_MOESM1_ESM.pdf (10 kb)
Supplementary Table 1 Copy numbers of WD motif of Camellia sinensis (PDF 10 kb)
10142_2012_301_MOESM2_ESM.pdf (1.8 mb)
Supplementary Figure 1 Phylogenetic trees of WD40s from Camellia sinensis and Arabidopsis (PDF 1843 kb)


  1. Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K (2009a) Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta 230(5):899–915PubMedCrossRefGoogle Scholar
  2. Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K (2009b) DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 151(4):2028–2045PubMedCrossRefGoogle Scholar
  3. Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM (2009) Light-induced vegetative anthocyanin pigmentation in petunia. J Exp Bot 60(7):2191–2202PubMedCrossRefGoogle Scholar
  4. Appelhagen I, Jahns O, Bartelniewoehner L, Sagasser M, Weisshaar B, Stracke R (2011) Leucoanthocyanidin dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes. Gene 484(1–2):61–68PubMedCrossRefGoogle Scholar
  5. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208PubMedCrossRefGoogle Scholar
  6. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380PubMedCrossRefGoogle Scholar
  7. Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Seguin A, MacKay J (2010) Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61(14):3847–3864PubMedCrossRefGoogle Scholar
  8. Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JE, Blais S, Tremblay L, Morency MJ, Pavy N, Grima-Pettenati J, Seguin A, Mackay J (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59(14):3925–3939PubMedCrossRefGoogle Scholar
  9. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394PubMedGoogle Scholar
  10. Bou-Torrent J, Roig-Villanova I, Galstyan A, Martinez-Garcia JF (2008) PAR1 and PAR2 integrate shade and hormone transcriptional networks. Plant Signal Behav 3(7):453–454PubMedCrossRefGoogle Scholar
  11. Brueggemann J, Weisshaar B, Sagasser M (2010) A WD40-repeat gene from Malus x domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Rep 29(3):285–294PubMedCrossRefGoogle Scholar
  12. Buck MJ, Atchley WR (2003) Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol 56(6):742–750PubMedCrossRefGoogle Scholar
  13. Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153(3):1398–1412PubMedCrossRefGoogle Scholar
  14. Chen L, Zhao LP, Gao QK (2005) Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Sci 168:359–363CrossRefGoogle Scholar
  15. Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530PubMedCrossRefGoogle Scholar
  16. De Vos M, Denekamp M, Dicke M, Vuylsteke M, Van Loon L, Smeekens SC, Pieterse CM (2006) The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae. Plant Signal Behav 1(6):305–311PubMedCrossRefGoogle Scholar
  17. Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15(11):2514–2531PubMedCrossRefGoogle Scholar
  18. Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140(2):499–511PubMedCrossRefGoogle Scholar
  19. Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165(1):9–28PubMedCrossRefGoogle Scholar
  20. Dong HS, Liu RX, Lu BB, Wang XM, Zhang CL, Zhang SP, Qian J, Chen L, Shi HJ (2010) Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. J Biosci 35(3):435–450PubMedCrossRefGoogle Scholar
  21. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55(6):940–953PubMedCrossRefGoogle Scholar
  22. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116PubMedCrossRefGoogle Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791CrossRefGoogle Scholar
  24. Flowers JM, Hanzawa Y, Hall MC, Moore RC, Purugganan MD (2009) Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol 26(11):2475–2486PubMedCrossRefGoogle Scholar
  25. Froidure S, Canonne J, Daniel X, Jauneau A, Briere C, Roby D, Rivas S (2010) AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci U S A 107(34):15281–15286PubMedCrossRefGoogle Scholar
  26. Glinsky GV (2008) An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle 7(16):2570–2583PubMedCrossRefGoogle Scholar
  27. Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127(4):1682–1693PubMedCrossRefGoogle Scholar
  28. Gomez MD, Urbez C, Perez-Amador MA, Carbonell J (2011) Characterization of constricted fruit (ctf) mutant uncovers a role for AtMYB117/LOF1 in ovule and fruit development in Arabidopsis thaliana. PLoS One 6(4):e18760PubMedCrossRefGoogle Scholar
  29. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/MYB transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827PubMedCrossRefGoogle Scholar
  30. Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76(3):543–553PubMedCrossRefGoogle Scholar
  31. Guo Y, Gan S (2011) AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol 156(3):1612–1619PubMedCrossRefGoogle Scholar
  32. Gutha LR, Casassa LF, Harbertson JF, Naidu RA (2010) Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 10:187–204PubMedCrossRefGoogle Scholar
  33. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747PubMedCrossRefGoogle Scholar
  34. Heisler MGB, Atkinson A, Bylstra YH, Walsh R, Smyth DR (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128(7):1089–1098PubMedGoogle Scholar
  35. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62(8):2465–2483PubMedCrossRefGoogle Scholar
  36. Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hulskamp M, Larkin J, Schnittger A (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148(3):1583–1602PubMedCrossRefGoogle Scholar
  37. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19(22):6150–6161PubMedCrossRefGoogle Scholar
  38. Kang YH, Kirik V, Hulskamp M, Nam KH, Hagely K, Lee MM, Schiefelbein J (2009) The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell 21(4):1080–1094PubMedCrossRefGoogle Scholar
  39. Khan N, Adhami VM, Mukhtar H (2010) Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr-Relat Cancer 17(1):R39–R52PubMedCrossRefGoogle Scholar
  40. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16(2):263–276PubMedCrossRefGoogle Scholar
  41. Kumar N, Maiti S (2008) A thermodynamic overview of naturally occurring intramolecular DNA quadruplexes. Nucleic Acids Res 36(17):5610–5622PubMedCrossRefGoogle Scholar
  42. Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18(23):1815–1823PubMedCrossRefGoogle Scholar
  43. Lesne A, Benecke A (2008) Feature context-dependency and complexity-reduction in probability landscapes for integrative genomics. Theor Biol Med Model 5:21PubMedCrossRefGoogle Scholar
  44. Li HH, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226(5):1243–1254PubMedCrossRefGoogle Scholar
  45. Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15(13):1201–1206PubMedCrossRefGoogle Scholar
  46. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50PubMedCrossRefGoogle Scholar
  47. Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi MK (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol 149(4):1761–1772PubMedCrossRefGoogle Scholar
  48. Liu R, Chen L, Jia Z, Lu B, Shi H, Shao W, Dong H (2011) Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant Microbe Interact 24(3):377–389PubMedCrossRefGoogle Scholar
  49. Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143(3):1252–1268PubMedCrossRefGoogle Scholar
  50. Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13(2):67–73PubMedCrossRefGoogle Scholar
  51. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440PubMedCrossRefGoogle Scholar
  52. Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83PubMedCrossRefGoogle Scholar
  53. Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol 145(3):736–746PubMedCrossRefGoogle Scholar
  54. Mu RL, Cao YR, Liu YF, Lei G, Zou HF, Liao Y, Wang HW, Zhang WK, Ma B, Du JZ, Yuan M, Zhang JS, Chen SY (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19(11):1291–1304PubMedCrossRefGoogle Scholar
  55. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12(10):1863–1878PubMedGoogle Scholar
  56. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13(9):2099–2114PubMedGoogle Scholar
  57. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134(16):2959–2968PubMedCrossRefGoogle Scholar
  58. Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S (2011) A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62(14):5105–5116PubMedCrossRefGoogle Scholar
  59. Pang YZ, Wenger JP, Saathoff K, Peel GJ, Wen JQ, Huhman D, Allen SN, Tang YH, Cheng XF, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151(3):1114–1129PubMedCrossRefGoogle Scholar
  60. Parekh P, Martin J, Chen Y, Colon D, Wang H, Tan W (2008) Using aptamers to study protein-protein interactions. Adv Biochem Eng Biot 110:177–194Google Scholar
  61. Park JS, Kim JB, Hahn BS, Kim KH, Ha SH, Kim YH (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci 166:953–961CrossRefGoogle Scholar
  62. Park MY, Kang JY, Kim SY (2011) Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells 31(5):447–454PubMedCrossRefGoogle Scholar
  63. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229PubMedCrossRefGoogle Scholar
  64. Punyasiri PA, Abeysinghe IS, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431(1):22–30PubMedCrossRefGoogle Scholar
  65. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34PubMedCrossRefGoogle Scholar
  66. Rosso L, Marques AC, Reichert AS, Kaessmann H (2008) Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet 4(8):e1000150PubMedCrossRefGoogle Scholar
  67. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  68. Samollow PB (2008) The opossum genome: insights and opportunities from an alternative mammal. Genome Res 18(8):1199–1215PubMedCrossRefGoogle Scholar
  69. Sethi D, Kumar P, Gupta KC (2008) 2-O-[2-(4,4′-dimethoxytrityloxyethyl)]-hydroxy acetaldehyde: a universal reagent for spectrophotometric estimation of polymer-supported functional groups. Anal Biochem 382(2):144–146PubMedCrossRefGoogle Scholar
  70. Shi CY, Wan XC (2009) Construction of cDNA library for young roots of tea plant (Camellia sinensis (L.) O. Kuntze) and analysis of its expressed sequence tags. J Nanjing Agric Univ 32:126–130Google Scholar
  71. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131PubMedCrossRefGoogle Scholar
  72. Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49(6):981–994PubMedCrossRefGoogle Scholar
  73. Smolen G, Bender J (2002) Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160(1):323–332PubMedGoogle Scholar
  74. Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33(2):413–423PubMedCrossRefGoogle Scholar
  75. Soreq L, Gilboa-Geffen A, Berrih-Aknin S, Lacoste P, Darvasi A, Soreq E, Bergman H, Soreq H (2008) Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays. PLoS One 3(6):e2392PubMedCrossRefGoogle Scholar
  76. Spelt C, Quattrocchio F, Mol JN, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12(9):1619–1632PubMedGoogle Scholar
  77. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456PubMedCrossRefGoogle Scholar
  78. Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677PubMedCrossRefGoogle Scholar
  79. Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B (2010) Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol 188(4):985–1000PubMedCrossRefGoogle Scholar
  80. Suganuma T, Pattenden SG, Workman JL (2008) Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev 22(10):1265–1268PubMedCrossRefGoogle Scholar
  81. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10(2):135–154PubMedGoogle Scholar
  82. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  83. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8(3):317–323PubMedCrossRefGoogle Scholar
  84. Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149(2):1028–1041PubMedCrossRefGoogle Scholar
  85. Van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4(1):50PubMedCrossRefGoogle Scholar
  86. Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17(5):1612–1624PubMedCrossRefGoogle Scholar
  87. Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61(2):107–114PubMedCrossRefGoogle Scholar
  88. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11(7):1337–1350PubMedGoogle Scholar
  89. Wang YS, Gao LP, Wang ZR, Liu YJ, Sun ML, Yang DQ, Wei CL, Shan Y, Xia T (2012) Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic-Amsterdam 133:72–83CrossRefGoogle Scholar
  90. Wester K, Digiuni S, Geier F, Timmer J, Fleck C, Hulskamp M (2009) Functional diversity of R3 single-repeat genes in trichome development. Development 136(9):1487–1496PubMedCrossRefGoogle Scholar
  91. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493PubMedCrossRefGoogle Scholar
  92. Wixon J, Ashurst J (2003) Meeting highlights: genome informatics. Comp Funct Genom 4(5):509–514CrossRefGoogle Scholar
  93. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45(6):895–907PubMedCrossRefGoogle Scholar
  94. Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ (2007) Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep 26(2):219–228PubMedCrossRefGoogle Scholar
  95. Yin Y, Li L, Yu XF, Thompson A, Guo M, Yoshida S, Asami T, Chory J (2009) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58(2):275–286PubMedCrossRefGoogle Scholar
  96. Zhang F, Gonzalez A, Zhao MZ, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130(20):4859–4869PubMedCrossRefGoogle Scholar
  97. Zhang Y, Cao G, Qu LJ, Gu H (2009) Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Rep 28(3):337–346PubMedCrossRefGoogle Scholar
  98. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lei Zhao
    • 1
  • Liping Gao
    • 2
  • Hongxue Wang
    • 1
  • Xiaotian Chen
    • 2
  • Yunsheng Wang
    • 2
  • Hua Yang
    • 1
  • Chaoling Wei
    • 1
  • Xiaochun Wan
    • 1
  • Tao Xia
    • 1
  1. 1.Key Laboratory of Tea Biochemistry & Biotechnology, Ministry of Agriculture & Ministry of EducationAnhui Agricultural UniversityHefeiChina
  2. 2.College of Life ScienceAnhui Agricultural UniversityHefeiChina

Personalised recommendations