Functional & Integrative Genomics

, Volume 12, Issue 3, pp 465–479 | Cite as

Subgenomic analysis of microRNAs in polyploid wheat

  • Melda Kantar
  • Bala Anı Akpınar
  • Miroslav Valárik
  • Stuart J. Lucas
  • Jaroslav Doležel
  • Pilar Hernández
  • Hikmet BudakEmail author
  • International Wheat Genome Sequencing Consortium, executive director Kellye Eversole (IWGSC) ( and
Original Paper


In this study, a survey of miRNAs using the next-generation sequencing data was performed at subgenomic level. After analyzing shotgun sequences from chromosome 4A of bread wheat (Triticum aestivum L.), a total of 68 different miRNAs were predicted in silico, of which 37 were identified in wheat for the first time. The long arm of the chromosome was found to harbor a higher variety (51) and representation (3,928) of miRNAs compared with the short arm (49; 2,226). Out of the 68 miRNAs, 32 were detected to be common to both arms, revealing the presence of separate miRNA clusters in the two chromosome arms. The differences in degree of representation of the different miRNAs were found to be highly variable, ranging 592-fold, which may have an effect on target regulation. Targets were retrieved for 62 (out of 68) of wheat-specific, newly identified miRNAs indicated that fundamental aspects of plant morphology such as height and flowering were predicted to be affected. In silico expression blast analysis indicated 24 (out of 68) were found to give hits to expressed sequences. This is the first report of species- and chromosome-specific miRNAs.


Triticum aestivum microRNA miRNA prediction Sub-genomic analysis Next-generation sequencing 





Short arm of chromosome 4A


Long arm of chromosome 4A

e value

Expectation value


Folding-free energies


Expressed sequence tag


Minimal folding-free energy


Minimal folding-free energy index


miRNA star strand


National center for biotechnology information




MicroRNA precursor


Small interfering RNA


Transposable element


Messenger RNA



Financial support by the Sabanci University Internal Grant, Spanish Ministry of Science and Innovation (MICINN grants BIO2009-07443, AGL2010-17316, and BIO2011-15237) and the Ministry of Education, Youth and Sports of the Czech Republic and the European Regional Development Fund (Operational Program Research and Development for Innovations No. ED0007/01/01) is gratefully acknowledged. The authors also acknowledge the help of D. Adali, E. Toklu, R. Fayotorbay, and The International Wheat Genome Sequencing Consortium for access to the 4A survey sequence developed under the IWGSC Survey Sequencing Initiative.

Supplementary material

10142_2012_285_MOESM1_ESM.doc (67 kb)
Supplementary Table 1 A) Perl Program This script uses NCBI BLAST to search for potential homologs of known miRNAs. B) Perl Program SumiRFold. This script uses a BLAST results table to retrieve sequences from the BLAST database and to obtain their predicted secondary structure using UNAfold, after which viable hairpins are detected and retrieved. (DOC 67 kb)
10142_2012_285_MOESM2_ESM.doc (406 kb)
Supplementary Table 2 List of computer based, newly identified miRNAs of chromosome 4A in T. aestivum and their characteristics. This table lists characteristics of only one identified wheat miRNA, derived from one sequence read, corresponding to each query sequence (DOC 405 kb)
10142_2012_285_MOESM3_ESM.doc (3.3 mb)
Supplementary Table 3 Number of sequence reads of 4AL from which potential miRNA stem-loop structures were retrieved. (DOC 3363 kb)
10142_2012_285_MOESM4_ESM.doc (1.9 mb)
Supplementary Table 4 Number of sequence reads of 4AS from which potential miRNA stem-loop structures were retrieved. (DOC 1908 kb)
10142_2012_285_MOESM5_ESM.doc (563 kb)
Supplementary Table 5 Homology of newly identified T. aestivum miRNAs to miRNAs in other plant species. A) Only 4AS; B) only 4AL; C) both chromosome arms (DOC 563 kb)
10142_2012_285_MOESM6_ESM.doc (256 kb)
Supplementary Table 6 Predicted targets of newly identified T. aestivum miRNAs. Targets were retrieved using psRNATarget software. (DOC 256 kb)
10142_2012_285_MOESM7_ESM.doc (56 kb)
Supplementary Table 7 Number of Blast hits for each miRNA (DOC 56 kb)
10142_2012_285_MOESM8_ESM.doc (82 kb)
Supplementary Table 8 Distribution of conserved miRNAs on B. distachyon chromosomes. (DOC 82 kb)
10142_2012_285_MOESM9_ESM.doc (250 kb)
Supplementary Table 9 Distribution of conserved miRNAs on O. sativa chromosomes. (DOC 249 kb)


  1. Bonnet E, Wuyts J et al (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101(31):11511–11516PubMedCrossRefGoogle Scholar
  2. Budak H, Akpinar BA (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15(11):791–799PubMedCrossRefGoogle Scholar
  3. Camacho C, Coulouris G et al (2009) BLAST+: architecture and applications. BMC Bioinforma 10:421CrossRefGoogle Scholar
  4. Chartrain L, Berry ST, Brown JKM (2005) Resistance of wheat line Kavkaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95(6):664–671PubMedCrossRefGoogle Scholar
  5. Chen X, Line RF, Jones SS (1995) Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology 85(11):1362–1367CrossRefGoogle Scholar
  6. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12(1):19–31PubMedCrossRefGoogle Scholar
  7. Dolezel J, Kubalakova M et al (2007) Chromosome-based genomics in the cereals. Chromosome Res 15(1):51–66PubMedCrossRefGoogle Scholar
  8. Dryanova A, Zakharov A et al (2008) Data mining for miRNAs and their targets in the Triticeae. Genome 51(6):433–443PubMedCrossRefGoogle Scholar
  9. Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7(5):512–520PubMedCrossRefGoogle Scholar
  10. Fahim M, Mechanicos A, Ayala-Navarrete L, Haber S, Larkin PJ (2011) Resistance to wheat streak mosaic virus—a survey of resources and development of molecular markers. Plant Pathol. doi: 10.1111/j.1365-3059.2011.02542.x
  11. Griffiths-Jones S, Grocock RJ et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144PubMedCrossRefGoogle Scholar
  12. Hernandez P, Martis M et al (2012) Next-generation sequencing and syntenic integration integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69(30):377–386PubMedCrossRefGoogle Scholar
  13. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110PubMedCrossRefGoogle Scholar
  14. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768Google Scholar
  15. Jin W, Li N et al (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121(3):351–355PubMedCrossRefGoogle Scholar
  16. Jones-Rhoades MW, Bartel DP et al (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  17. Kantar M, Unver T et al (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10(4):493–507PubMedCrossRefGoogle Scholar
  18. Kantar M, Lucas SJ et al (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233(3):471–484PubMedCrossRefGoogle Scholar
  19. Khraiwesh B, Zhu JK et al (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148PubMedCrossRefGoogle Scholar
  20. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385PubMedCrossRefGoogle Scholar
  21. Krol J, Loedige I et al (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610PubMedGoogle Scholar
  22. Li A, Mao L (2007) Evolution of plant microRNA gene families. Cell Res 17(3):212–218PubMedGoogle Scholar
  23. Li W, Zhang P et al (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40(4):500–511PubMedCrossRefGoogle Scholar
  24. Liu L, Wang L, Yao J, Zheng Y, Zhao C (2010) Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol Plant Breed 1(5)Google Scholar
  25. Mares D, Mrva K et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111(7):1357–1364PubMedCrossRefGoogle Scholar
  26. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31PubMedCrossRefGoogle Scholar
  27. Meyers BC, Axtell MJ et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190PubMedCrossRefGoogle Scholar
  28. Miftahudin, Ross K et al (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663PubMedCrossRefGoogle Scholar
  29. Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97(4):535–540CrossRefGoogle Scholar
  30. Navarro L, Dunoyer P et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439PubMedCrossRefGoogle Scholar
  31. Park MY, Wu G et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102(10):3691–3696PubMedCrossRefGoogle Scholar
  32. Paux E, Roger D et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48(3):463–474PubMedCrossRefGoogle Scholar
  33. Phillips JR, Dalmay T et al (2007) The role of small RNAs in abiotic stress. FEBS Lett 581(19):3592–3597PubMedCrossRefGoogle Scholar
  34. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5):814–821PubMedCrossRefGoogle Scholar
  35. Rhoades MW, Reinhart BJ et al (2002) Prediction of plant microRNA targets. Cell 110(4):513–520PubMedCrossRefGoogle Scholar
  36. Sabot F, Guyot R et al (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Genomics 274(2):119–130PubMedCrossRefGoogle Scholar
  37. Schreiber AW, Shi BJ et al (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12:129PubMedCrossRefGoogle Scholar
  38. Schwab R, Palatnik JF et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527PubMedCrossRefGoogle Scholar
  39. Sunkar R, Girke T et al (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5):1397–1411PubMedCrossRefGoogle Scholar
  40. Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230(4):659–669PubMedCrossRefGoogle Scholar
  41. Unver T, Namuth-Covert DM, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. Int J Plant Genomics. doi: 10.1155/2009/262463
  42. Unver T, Bakar M et al (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics 283(4):397–413PubMedCrossRefGoogle Scholar
  43. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13(7):350–358PubMedCrossRefGoogle Scholar
  44. Vitulo N, Albiero A et al (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6(10):e26421PubMedCrossRefGoogle Scholar
  45. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687PubMedCrossRefGoogle Scholar
  46. Wei B, Cai T et al (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9(4):499–511PubMedCrossRefGoogle Scholar
  47. Wu L, Zhou H et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475PubMedCrossRefGoogle Scholar
  48. Yao Y, Guo G et al (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8(6):R96PubMedCrossRefGoogle Scholar
  49. Zhang BH, Pan XP et al (2006a) Identification of 188 conserved maize microRNAs and their targets. Febs Letters 580(15):3753–3762PubMedCrossRefGoogle Scholar
  50. Zhang BH, Pan XP et al (2006b) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16PubMedCrossRefGoogle Scholar
  51. Zhang BH, Wang QL et al (2007a) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210(2):279–289PubMedCrossRefGoogle Scholar
  52. Zhang BH, Wang QL et al (2007b) Identification of cotton microRNAs and their targets. Gene 397(1–2):26–37PubMedCrossRefGoogle Scholar
  53. Zhang BH, Pan XP et al (2008) Identification of soybean microRNAs and their targets. Planta 229(1):161–182PubMedCrossRefGoogle Scholar
  54. Zhang L, Chia JM et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Melda Kantar
    • 1
  • Bala Anı Akpınar
    • 1
  • Miroslav Valárik
    • 2
  • Stuart J. Lucas
    • 1
  • Jaroslav Doležel
    • 2
  • Pilar Hernández
    • 3
  • Hikmet Budak
    • 1
    Email author
  • International Wheat Genome Sequencing Consortium, executive director Kellye Eversole (IWGSC) ( and
  1. 1.Biological Sciences and Bioengineering ProgramSabanci UniversityIstanbulTurkey
  2. 2.Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
  3. 3.Instituto de Agricultura Sostenible (IAS-CSIC)CordobaSpain

Personalised recommendations