Functional & Integrative Genomics

, Volume 12, Issue 2, pp 357–365

Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes

  • Vadim B. Fedorov
  • Anna V. Goropashnaya
  • Øivind Tøien
  • Nathan C. Stewart
  • Celia Chang
  • Haifang Wang
  • Jun Yan
  • Louise C. Showe
  • Michael K. Showe
  • Seth W. Donahue
  • Brian M. Barnes
Original Paper

Abstract

Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

Keywords

Hibernation Bone biosynthesis Gene expression Apoptosis 

Supplementary material

10142_2012_266_MOESM1_ESM.pdf (821 kb)
ESM 1(PDF 821 kb)

References

  1. Bradford RM, Heiden DM, Gray SK, Buckendahl P, Vaughan MR, Tsai CJ, Donahue SW (2009) Serum from hibernating bears exhibits increased osteocalcin and stimulates decreased apoptotic signaling in differentiating MC3T3-E1 osteoblasts [abstract]. ASBMR 31st Annual Meeting SU0205Google Scholar
  2. Donahue SW, Galley SA, Vaughan MR, Patterson-Buckendahl P, Demers LM, Vance JL, McGee ME (2006) Parathyroid hormone may maintain bone formation in hibernating black bears (Ursus americanus) to prevent disuse osteoporosis. J Exp Biol 209:1630–1638PubMedCrossRefGoogle Scholar
  3. Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Gracey AY, Chang CL, Qin SZ, Pertea G, Quackenbush J, Showe LC, Showe MK, Boyer BB, Barnes BM (2009) Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus). Physiol Genomics 37:108–118PubMedCrossRefGoogle Scholar
  4. Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Chang C, Wang H, Yan J, Showe LC, Showe MK, Barnes BM (2011) Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genomics 12:171PubMedCrossRefGoogle Scholar
  5. Fink T, Rasmussen JG, Emmersen J, Pilgaard L, Fahlman A, Brunberg S, Josefsson J, Arnemo JM, Zachar V, Swenson JE, Frobert O (2011) Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro. Stem Cell Res 7:89–95PubMedCrossRefGoogle Scholar
  6. Floyd T, Nelson RA, Wynne GF (1990) Calcium and bone metabolic homeostasis in active and denning black bears (Ursus americanus). Clin Orthop Relat Res 255:301–309PubMedGoogle Scholar
  7. Harlow HJ, Lohuis T, Beck TD, Iaizzo PA (2001) Muscle strength in overwintering bears. Nature 409:997PubMedCrossRefGoogle Scholar
  8. Kaneps AJ, Stover SM, Lane NE (1997) Changes in canine cortical and cancellous bone mechanical properties following immobilization and remobilization with exercise. Bone 21:419–423PubMedCrossRefGoogle Scholar
  9. Kari L, Loboda A, Nebozhyn M, Rook AH, Vonderheid EC, Nichols C, Virok D, Chang C, Horng WH, Johnston J, Wysocka M, Showe MK, Showe LC (2003) Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med 197:1477–1488PubMedCrossRefGoogle Scholar
  10. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  11. Lundberg DA, Nelson RA, Wahner HW, Jones JD (1976) Protein metabolism in the black bear before and during hibernation. Mayo Clin Proc 51:716–722PubMedGoogle Scholar
  12. McGee ME, Maki AJ, Johnson SE, Nelson OL, Robbins CT, Donahue SW (2008) Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis). Bone 42:396–404PubMedCrossRefGoogle Scholar
  13. McGee-Lawrence ME, Carey HV, Donahue SW (2008) Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Regul Integr Comp Physiol 295:R1999–R2014PubMedCrossRefGoogle Scholar
  14. McGee-Lawrence ME, Wojda SJ, Barlow LN, Drummer TD, Castillo AB, Kennedy O, Condon KW, Auger J, Black HL, Nelson OL, Robbins CT, Donahue SW (2009) Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone 6:1186–1191CrossRefGoogle Scholar
  15. Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39:2955–2958PubMedGoogle Scholar
  16. Nelson RA, Jones JD, Wahner HW, McGill DB, Code CF (1975) Nitrogen metabolism in bears: urea metabolism in summer starvation and in winter sleep and role of urinary bladder in water and nitrogen conservation. Mayo Clin Proc 50:141–146PubMedGoogle Scholar
  17. Pardy CK, Wohl GR, Ukrainetz PJ, Sawers A, Boyd SK, Zernicke RF (2004) Maintenance of bone mass and architecture in denning black bears (Ursus americanus). J Zool 263:359–364CrossRefGoogle Scholar
  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2001–2007CrossRefGoogle Scholar
  19. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445PubMedCrossRefGoogle Scholar
  20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550PubMedCrossRefGoogle Scholar
  21. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749PubMedCrossRefGoogle Scholar
  22. Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909PubMedCrossRefGoogle Scholar
  23. Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T (2004) Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19:1771–1778PubMedCrossRefGoogle Scholar
  24. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28PubMedCrossRefGoogle Scholar
  25. Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, Reimers M, Stephens RM, Bryant D, Burt SK, Elnekave E, Hari DM, Wynn TA, Cunningham-Rundles C, Stewart DM, Nelson D, Weinstein JN (2005) High-Throughput GoMiner, an ‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of common variable immune deficiency (CVID). BMC Bioinforma 6:168CrossRefGoogle Scholar
  26. Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13:1594–1601PubMedCrossRefGoogle Scholar
  27. Zhao S, Shao CX, Goropashnaya AV, Stewart NC, Xu YC, Tøien Ø, Barnes BM, Fedorov VB, Yan J (2010) Genomic analysis of expressed sequence tags in American black bear Ursus americanus. BMC Genomics 11:201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vadim B. Fedorov
    • 1
  • Anna V. Goropashnaya
    • 1
  • Øivind Tøien
    • 1
  • Nathan C. Stewart
    • 1
  • Celia Chang
    • 2
  • Haifang Wang
    • 3
  • Jun Yan
    • 3
  • Louise C. Showe
    • 2
  • Michael K. Showe
    • 2
  • Seth W. Donahue
    • 4
  • Brian M. Barnes
    • 1
  1. 1.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Systems and Computational Biology Centerthe Wistar InstitutePhiladelphiaUSA
  3. 3.CAS-MPG Partner Institute for Computational BiologyShanghai Institutes of Biological SciencesShanghaiChina
  4. 4.Department of Biomedical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations