Functional & Integrative Genomics

, Volume 12, Issue 2, pp 277–289 | Cite as

Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice

  • Sudhakar Thalapati
  • Anil K. Batchu
  • Sarla Neelamraju
  • Rajeshwari RamananEmail author
Original Paper


Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.


Transcriptomics O. rufipogon Rice progenitors Restorer line Yield increase Introgression Hybrids 



This work and ST were supported by a DBT grant to NS [DBT No.BT/AD/FG-2(PH-II)2009]. AKB was funded by Indian Council for Agricultural Research project 3019 (NPTC/FG/05/2672/33). We acknowledge the contributions of A Prasad Babu, C Surendhar Reddy, and BP Mallikarjuna Swamy in earlier work on developing and evaluating introgression lines and marker aided selection. We thank Project Director, DRR for the encouragement. We thank G. Haritha and N. Naga Deepthi for help in identifying polymorphic markers. The authors are thankful to the Sequencing laboratory CCMB, India for providing the sequencing facility used for this study.

Supplementary material

10142_2012_265_MOESM1_ESM.doc (88 kb)
ESM 1 (DOC 88 kb)
10142_2012_265_MOESM2_ESM.doc (36 kb)
ESM 2 (DOC 36 kb)
10142_2012_265_MOESM3_ESM.doc (69 kb)
ESM 3 (DOC 69 kb)
10142_2012_265_MOESM4_ESM.doc (76 kb)
ESM 4 (DOC 76 kb)
10142_2012_265_MOESM5_ESM.doc (148 kb)
ESM 5 (DOC 147 kb)
10142_2012_265_MOESM6_ESM.doc (454 kb)
ESM 6 (DOC 453 kb)
10142_2012_265_MOESM7_ESM.doc (36 kb)
ESM 7 (DOC 35 kb)
10142_2012_265_MOESM8_ESM.doc (44 kb)
ESM 8 (DOC 43 kb)
10142_2012_265_MOESM9_ESM.tif (169 kb)
ESM 9 (TIFF 169 kb)
10142_2012_265_MOESM10_ESM.tif (434 kb)
ESM 10 (TIFF 434 kb)


  1. Alexa A, Rahnenf uhrer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13):1600–1607PubMedCrossRefGoogle Scholar
  2. Ali ML, Sanchez PL, Yu SB, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234CrossRefGoogle Scholar
  3. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Enrique R, Qian Q, Hidemi K, Makoto M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  4. Babu AP, Ramesha MS, Sudhakar T, Reddy CS, Swamy BPM, Viraktamath BC Sarla N (2009) Marker assisted introgression of QTL yld2.1 or sub QTL regions from O. rufipogon increases yield of KMR3 and derived hybrids. Proceedings of the 7th International Symposium on Rice Functional Genomics, November 16-19, 2009, International Rice Research Institute, pp: 44Google Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  6. Bentsink L, Hanson J, Hanhart CJ, Vries HB, Coltrane C, Keizer P, El-Lithy M, Blanco CA, Andrés MT, Reymond M, Eeuwijk F, Smeekens S, Koornneef M (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. PNAS 107(9):4264–4269PubMedCrossRefGoogle Scholar
  7. Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86PubMedCrossRefGoogle Scholar
  8. Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47PubMedCrossRefGoogle Scholar
  9. Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume B, Milat ML, Ponchet M, Mikes V, Kader JC, Blein JP (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 509(1):27–30PubMedCrossRefGoogle Scholar
  10. Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat–barley chromosome addition lines. Genetics 172:1277–1285PubMedCrossRefGoogle Scholar
  11. Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant J 66:564–578CrossRefGoogle Scholar
  12. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23:1219–1230PubMedCrossRefGoogle Scholar
  13. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4(e1000274)Google Scholar
  14. De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D (2004) Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J 39:537–59, Erratum in: 2008. Plant J. 56:180PubMedCrossRefGoogle Scholar
  15. Deng QY, Chen LY, Deng HB, Zhuang W, Xiong YD (2006) Yield-increasing effect of yield-enhancing QTL from Oryza rufipogon after being transferred into late-season rice restorer line. Mol Plant Breeding 4:59–64Google Scholar
  16. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136CrossRefGoogle Scholar
  17. Dornelas MC, van Lammeren AAM, Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J 21:419–429PubMedCrossRefGoogle Scholar
  18. Edqvist J, Farbos I (2002) Characterization of germination-specific lipid transfer proteins from Euphorbia lagascae. Planta 215:41–50PubMedCrossRefGoogle Scholar
  19. Endo M, Tsuchiya T, Saito H, Matsubara H, Hakozaki H, Masuko H et al (2004) Identification and molecular characterization of novel anther-specific genes in japonica rice, Oryza sativa L. by using cDNA microarray. Genes Genet Syst 79:213–226PubMedCrossRefGoogle Scholar
  20. Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). J Gen Genomics 37:147–1CrossRefGoogle Scholar
  21. Gur A, Semel Y, Osorio S, Friedmann M, Seekh S, Ghareeb B, Mohammad A, Pleban T, Gera G, Fernie AR, Zamir D (2011) Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor Appl Genet 122:405–420PubMedCrossRefGoogle Scholar
  22. Han FP, Liu ZL, Tan M, Hao S, Fedak G, Liu B (2004) Mobilized retrotransposon Tos17 of rice by alien DNA introgression transposes into genes and causes structural and methylation alterations of a flanking genomic region. Hereditas 141:243–251PubMedCrossRefGoogle Scholar
  23. He GM, Luo X, Tian F, Li K, Zhu Z, Su W (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626PubMedCrossRefGoogle Scholar
  24. Huang YI, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q (2006) Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol 62:579–591PubMedCrossRefGoogle Scholar
  25. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedCrossRefGoogle Scholar
  26. Jeon JS, Jung KH, Kim HB, Suh JP, Khush GS (2011) Genetic and molecular insights into the enhancement of rice yield potential. J Plant Biol 54:1–9CrossRefGoogle Scholar
  27. Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q et al (2008) Refinement of light-responsive transcript lists using rice Oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 3(10):e3337PubMedCrossRefGoogle Scholar
  28. Kamenetzky L, Asıs R, Bassi S, de Godoy F, Bermu dez L, Fernie AR, Van Sluys MA, Julia Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions. Determining metabolism and yield-associated traits. Plant Physiol 152:1772–1786PubMedCrossRefGoogle Scholar
  29. Katsumi M (1985) Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol 26:615–625Google Scholar
  30. Kim TW, Shenheng Guan S, Sun Y, Deng Z, Tang W, Shang JX, Ying Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biol 11:1254–1260PubMedCrossRefGoogle Scholar
  31. Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SE (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsisi BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466PubMedCrossRefGoogle Scholar
  32. Kondou H, Ooka H, Yamada H, Satoh K, Kikuchi S, Takahara Y, Yamamoto K (2006) Microarray analysis of gene expression at initial stages of rice seed development. Breeding Sci 56(3):235–242CrossRefGoogle Scholar
  33. Laitinen RAE, Immanen J, Auvinen P (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 15:475–486PubMedCrossRefGoogle Scholar
  34. Lee T-H, Kim Y-K, Pham TTM, Song SI, Kim J-K, Kang KY, An G, Jung K-H, Galbraith DW, Kim M, Yoon U-H, Nahm BH (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plany Physiol 151:16–33CrossRefGoogle Scholar
  35. Lee I, Seob Y-S, Coltraneb D, Hwanga S, Oha T, Marcottec EM, Ronald PC (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. PNAS 108:18548–18553PubMedCrossRefGoogle Scholar
  36. Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615PubMedCrossRefGoogle Scholar
  37. Liang F, Deng Q, Wang Y, Xiong Y, Jin D, Li J, Wang B (2004) Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311 × O. rufipogon” using SSR. Euphytica 139:159–165CrossRefGoogle Scholar
  38. Lin M, Hu B, Chen L, Sun P, Fan Y, Wu P, Chen X (2009) Computational identification of potential molecular interactions in Arabidopsis. Plant Physiol 151(1):34–46PubMedCrossRefGoogle Scholar
  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCt method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  40. Luo X, Wu S, Tian F, Xin X, Zha X, Dong X, Fu Y, Wang X, Yang J, Sun C (2011) Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff). Plant Science 181:14–22PubMedCrossRefGoogle Scholar
  41. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A predicted lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403PubMedCrossRefGoogle Scholar
  42. Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP (2004) Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 55:501–520PubMedCrossRefGoogle Scholar
  43. Marri PR, Sarla N, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:33PubMedCrossRefGoogle Scholar
  44. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch HJ, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52CrossRefGoogle Scholar
  45. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  46. Mussig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251PubMedCrossRefGoogle Scholar
  47. Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136PubMedCrossRefGoogle Scholar
  48. Peng Z-Y, Zhang TL, Dzikiewicz KM, Li S, Wang X, Hu G, Zhu Z, Wei X (2009) Characterization of the genome expression trends in the heading-stage panicle of six rice lineages. Genomics 93:169–178PubMedCrossRefGoogle Scholar
  49. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Shinozaki KY (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedCrossRefGoogle Scholar
  50. Sarla N, Mallikarjuna Swamy BP, Sudhakar T, Prasad Babu A, Kaladhar K, Surendhar Reddy C, Ashok Reddy G, Ramesha MS, Shobha Rani N and Viraktamath (2009) High yielding rice lines from elite × wild crosses. 2009. Directorate of Rice Research, News letter, Vol.7 No.2Google Scholar
  51. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  52. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Shinozaki KY, Carninci P, Kawai J, Hayashizaki Y, Kazuo Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant J 31:279–292CrossRefGoogle Scholar
  53. Swamy BPM, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120PubMedCrossRefGoogle Scholar
  54. Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29:663–680CrossRefGoogle Scholar
  55. Swamy BPM, Kaladhar K, Ramesha MS, Viraktamath BC, Sarla N (2011) Molecular mapping of QTLs for yield and yield-related traits in Oryza sativa cv Swarna×O. nivara (IRGC81848) backcross population. Rice Science 18:178–186CrossRefGoogle Scholar
  56. Swanson-Wagner R, Eichten SR, Kumari S (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. doi: 10.1101/gr.109165.110
  57. Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F (2009) Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. The Plant J 57:207–219CrossRefGoogle Scholar
  58. Tanksley SD, Mc Couch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  59. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  60. Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield related traits. Theor Appl Genet 112:570–80PubMedCrossRefGoogle Scholar
  61. Tichtinsky G, Tavares R, Takvorian A, Schwebel Dugue N, Twell D, Kreis M (1998) An evolutionary conserved group of plant GSK-3/shaggy-like protein kinase genes preferentially expressed in developing pollen. Biochim Biophys Acta 1442:261–273PubMedGoogle Scholar
  62. Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623PubMedCrossRefGoogle Scholar
  63. Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B (2005) Extensive denovo variation in rice induced by introgression from wild rice (Zizania latifolia ). Genetics 170:1945–1956PubMedCrossRefGoogle Scholar
  64. Wang N, Wang H et al (2010) Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biol 10:190PubMedCrossRefGoogle Scholar
  65. Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G et al (2009) A transcriptomic analysis of superhybrid rice LYP9 and its parents. PNAS 106:7695–7701PubMedCrossRefGoogle Scholar
  66. Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484CrossRefGoogle Scholar
  67. Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. The Plant Cell 4:759–771PubMedCrossRefGoogle Scholar
  68. Wu X (2009) Prospects of developing hybrid rice with super high yield. Agron J 101(3688)Google Scholar
  69. Xiao J, Grandillo S, Ahn SN, Mc Couch SR, Tanksley SD, Li J, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224CrossRefGoogle Scholar
  70. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, Mc Couch SR (1998) Identification of trait improving quantitative trait loci alleles from a wild rice relative Oryza rufipogon. Genetics 150:899–909PubMedGoogle Scholar
  71. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277PubMedCrossRefGoogle Scholar
  72. Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S (2004) Microarray analysis of brassinosteroids and gibberellin regulated gene expression in rice seedlings. Mol Gen Genomics 271:468–478CrossRefGoogle Scholar
  73. Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851PubMedCrossRefGoogle Scholar
  74. Zhang Q, Lin SC, Zho BY, Wang CL, Yang WC, Zhou YL, Li DY, Chen CB, Zhu LH (1998) Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas orzyae pv. oryzae) from O. rufipogon. Rice Genet Newsl 15:138–142Google Scholar
  75. Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW (2008) A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant 1:720–731PubMedCrossRefGoogle Scholar
  76. Zhong G, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sudhakar Thalapati
    • 1
  • Anil K. Batchu
    • 1
  • Sarla Neelamraju
    • 1
  • Rajeshwari Ramanan
    • 2
    Email author
  1. 1.Biotechnology UnitDirectorate of Rice ResearchHyderabadIndia
  2. 2.Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations