Functional & Integrative Genomics

, Volume 12, Issue 1, pp 63–79 | Cite as

BRCA1-mediated signaling pathways in ovarian carcinogenesis

  • Tejaswita M. Karve
  • Xin Li
  • Tapas SahaEmail author
Original Paper


The link between loss or defect in functional BRCA1 and predisposition for development of ovarian and breast cancer is well established. Germ-line mutations in BRCA1 are responsible for both hereditary breast and ovarian cancer, which is around 5–10% for all breast and 10–15% of all ovarian cancer cases. However, majority of cases of ovarian cancer are sporadic in nature. The inactivation of cellular BRCA1 due to mutations or loss of heterozygosity is one of the most commonly observed events in such cases. Complement-resistant retroviral BRCA1 vector, MFG-BRCA1, is the only approved gene therapy for ovarian cancer patients by the Federal and Drug Administration. Given the limited available information, there is a need to evaluate the effects of BRCA1 on the global gene expression pattern for better understanding the etiology of the disease. Here, we use Ingenuity Pathway Knowledge Base to examine the differential pattern of global gene expression due to stable expression of BRCA1 in the ovarian cancer cell line, SKOV3. The functional analysis detected at least five major pathways that were significantly (p < 0.05) altered. These include: cell to cell signaling and interaction, cellular function and maintenance, cellular growth and proliferation, cell cycle and DNA replication, and recombination repair. In addition, we were able to detect several biologically relevant genes that are central for various signaling networks involved in cellular homeostasis; TGF-β1, TP53, c-MYC, NF-κB and TNF-α. This report provides a comprehensive rationale for tumor suppressor function(s) of BRCA1 in ovarian carcinogenesis.


Ingenuity pathway analysis Hierarchical clustering NF-κB p53 TNF-α c-Myc 



TS is thankful to the American Cancer Society (IRG #97-152-16-2), Fisher Center for Familial Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University for financial support. TS is thankful to Prof. Eliot Rosen for laboratory space, Prof. Peter Shields, Prof. Stephen Byers, Dr. Michael Johnson and Prof. Robert Clark of the Lombardi Cancer Center for their continuous support.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10142_2011_251_MOESM1_ESM.pdf (985 kb)
Supplementary Fig 1 Network of upregulated genes central to p53 and Myc in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with the p53 tumor suppressor and Myc oncogene that was significantly (p < 0.05) induced due to stable expression of wtBRCA1 in SKOV3. The color intensities indicate the increase in fold expression levels of the respective genes. Usages of arrows, lines, various shapes, and labels along with the descriptive notes and edges highlight the nature of the relationships among the functional genes in the network. (PDF 984 kb)
10142_2011_251_MOESM2_ESM.pdf (1 mb)
Supplementary Fig 2 Network of downregulated genes central to TNF, ERBB2, and Myc in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with TNF, the inflammatory cytokine, ERBB2, the receptor tyrosine kinase and Myc oncogene that were significantly (p < 0.05) knocked down due to stable expression of wtBRCA1 in SKOV3 cells. See supplementary Fig. 1 (legend) for other information. (PDF 1024 kb)
10142_2011_251_MOESM3_ESM.pdf (996 kb)
Supplementary Fig 3 Network of upregulated genes central to IL-6 and ERK1 in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with IL6 and ERK1 that were significantly (p < 0.05) induced due to stable expression of wtBRCA1 in SKOV3. See Supplementary Fig. 1 (legend) for other information. (PDF 996 kb)
10142_2011_251_MOESM4_ESM.pdf (127 kb)
Supplementary Fig 4 Network of upregulated genes central to β-estradiol, RNA polymerase 1 and progesterone in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with β-estradiol, RNA polymerase 1 and progesterone that were significantly (p < 0.05) induced due to stable expression of wtBRCA1 in SKOV3. See Supplementary Fig. 1 (legend) for other information. (PDF 126 kb)
10142_2011_251_MOESM5_ESM.pdf (856 kb)
Supplementary Fig 5 Network of upregulated genes central to FOXA2 in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with Forkhead Box A2 (FOXA2) that were significantly (p < 0.05) induced due to stable expression of wtBRCA1 in SKOV3 cells. See Supplementary Fig. 1 (legend) for other information. (PDF 855 kb)
10142_2011_251_MOESM6_ESM.pdf (970 kb)
Supplementary Fig 6 Network of upregulated genes central to Cyclin D2, TGF-β, and Smad3 in BRCA1-SKOV3. Using Ingenuity Pathway Knowledge Base, we were able to deduce number of network of genes centered with cyclin D2, TGF-β, and Smad3 that were significantly (p < 0.05) induced due to stable expression of wtBRCA1 in SKOV3 cells. See Supplementary Fig. 1 (legend) for other information. (PDF 969 kb)
10142_2011_251_MOESM7_ESM.pdf (31 kb)
Supplementary Table 1 List of genes in each cluster (Fig. 2) with fold change and p values (PDF 30 kb)


  1. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, Stewart C, Fereday S, Caldas C, Defazio A, Bowtell D, Brenton JD (2010) Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 221(1):49–56. doi: 10.1002/path.2696 PubMedCrossRefGoogle Scholar
  2. Ali-Fehmi R, Chatterjee M, Ionan A, Levin NK, Arabi H, Bandyopadhyay S, Shah JP, Bryant CS, Hewitt SM, O’Rand MG, Alekseev OM, Morris R, Munkarah A, Abrams J, Tainsky MA (2010) Analysis of the expression of human tumor antigens in ovarian cancer tissues. Cancer Biomark 6(1):33–48. doi: 10.3233/CBM-2009-0117 PubMedGoogle Scholar
  3. Aravindakshan J, Chen X, Sairam MR (2006) Differential expression of claudin family proteins in mouse ovarian serous papillary epithelial adenoma in aging FSH receptor-deficient mutants. Neoplasia 8(12):984–994. doi: 10.1593/neo.06529 PubMedCrossRefGoogle Scholar
  4. Bae I, Rih JK, Kim HJ, Kang HJ, Haddad B, Kirilyuk A, Fan S, Avantaggiati ML, Rosen EM (2005) BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle 4(11):1641–1666PubMedCrossRefGoogle Scholar
  5. Banerjee S, Kaye SB, Ashworth A (2010) Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol 7(9):508–519. doi: 10.1038/nrclinonc.2010.116 PubMedCrossRefGoogle Scholar
  6. Bjorge L, Stoiber H, Dierich MP, Meri S (2006) Minimal residual disease in ovarian cancer as a target for complement-mediated mAb immunotherapy. Scand J Immunol 63(5):355–364. doi: 10.1111/j.1365-3083.2006.01751.x PubMedCrossRefGoogle Scholar
  7. Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, Gardner GJ, Hao K, Wong WH, Barrett JC, Lu KH, Sood AK, Gershenson DM, Mok SC, Birrer MJ (2005) Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res 65(22):10602–10612. doi: 10.1158/0008-5472.CAN-05-2240 PubMedCrossRefGoogle Scholar
  8. Bronstein JM, Tiwari-Woodruff S, Buznikov AG, Stevens DB (2000) Involvement of OSP/claudin-11 in oligodendrocyte membrane interactions: role in biology and disease. J Neurosci Res 59(6):706–711. doi: 10.1002/(SICI)1097-4547(20000315)59:6<706::AID-JNR2>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  9. Castellano G, Reid JF, Alberti P, Carcangiu ML, Tomassetti A, Canevari S (2006) New potential ligand-receptor signaling loops in ovarian cancer identified in multiple gene expression studies. Cancer Res 66(22):10709–10719. doi: 10.1158/0008-5472.CAN-06-1327 PubMedCrossRefGoogle Scholar
  10. Chen CH, Shen J, Lee WJ, Chow SN (2005) Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int J Gynecol Cancer 15(5):878–883. doi: 10.1111/j.1525-1438.2005.00150.x PubMedCrossRefGoogle Scholar
  11. Clark-Knowles KV, O’Brien AM, Weberpals JI (2010) BRCA1 as a therapeutic target in sporadic epithelial ovarian cancer. J Oncol 2010:891059. doi: 10.1155/2010/891059 PubMedGoogle Scholar
  12. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94. doi: 10.1038/nrc2069 PubMedCrossRefGoogle Scholar
  13. Fan S, Wang JA, Yuan RQ, Ma YX, Meng Q, Erdos MR, Brody LC, Goldberg ID, Rosen EM (1998) BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene 16(23):3069–3082PubMedCrossRefGoogle Scholar
  14. Geisler JP, Hatterman-Zogg MA, Rathe JA, Buller RE (2002) Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst 94(1):61–67PubMedCrossRefGoogle Scholar
  15. Giudice A, Montella M (2006) Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28(2):169–181. doi: 10.1002/bies.20359 PubMedCrossRefGoogle Scholar
  16. Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, Reisman D (2007) The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 26(49):7058–7066. doi: 10.1038/sj.onc.1210514 PubMedCrossRefGoogle Scholar
  17. Havrilesky LJ, McMahon CP, Lobenhofer EK, Whitaker R, Marks JR, Berchuck A (2001) Relationship between expression of coactivators and corepressors of hormone receptors and resistance of ovarian cancers to growth regulation by steroid hormones. J Soc Gynecol Investig 8(2):104–113.PubMedCrossRefGoogle Scholar
  18. He J, Smith ER, Xu XX (2001) Disabled-2 exerts its tumor suppressor activity by uncoupling c-Fos expression and MAP kinase activation. J Biol Chem 276(29):26814–26818. doi: 10.1074/jbc.M101820200 PubMedCrossRefGoogle Scholar
  19. Holschneider CH, Berek JS (2000) Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol 19(1):3–10. doi: 10.1002/1098-2388(200007/08)19:1<3::AID-SSU2>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  20. Hoshiya Y, Gupta V, Segev DL, Hoshiya M, Carey JL, Sasur LM, Tran TT, Ha TU, Maheswaran S (2003) Mullerian Inhibiting Substance induces NFkB signaling in breast and prostate cancer cells. Mol Cell Endocrinol 211(1–2):43–49PubMedCrossRefGoogle Scholar
  21. Jiang Y, Berk M, Singh LS, Tan H, Yin L, Powell CT, Xu Y (2005) KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clin Exp Metastasis 22(5):369–376. doi: 10.1007/s10585-005-8186-4 PubMedCrossRefGoogle Scholar
  22. Jiang T, Wang S, Huang L, Zhang S (2009) Clinical significance of serum DKK-1 in patients with gynecological cancer. Int J Gynecol Cancer 19(7):1177–1181. doi: 10.1111/IGC.0b013e31819d8b2d PubMedCrossRefGoogle Scholar
  23. Jiang T, Huang L, Wang S, Zhang S (2010) Clinical significance of serum Dkk-3 in patients with gynecological cancer. J Obstet Gynaecol Res 36(4):769–773. doi: 10.1111/j.1447-0756.2010.01234.x PubMedCrossRefGoogle Scholar
  24. Johnstone CN, Castellvi-Bel S, Chang LM, Sung RK, Bowser MJ, Pique JM, Castells A, Rustgi AK (2005) PRR5 encodes a conserved proline-rich protein predominant in kidney: analysis of genomic organization, expression, and mutation status in breast and colorectal carcinomas. Genomics 85(3):338–351. doi: 10.1016/j.ygeno.2004.11.002 PubMedCrossRefGoogle Scholar
  25. Ju W, Yoo BC, Kim IJ, Kim JW, Kim SC, Lee HP (2009) Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 18(2–3):47–56PubMedCrossRefGoogle Scholar
  26. Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC, Lorenzi MV (2001) Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 20(55):7965–7975. doi: 10.1038/sj.onc.1204985 PubMedCrossRefGoogle Scholar
  27. Katoh M (2007) Conserved POU/OCT- and GATA-binding sites in 5′-flanking promoter region of mammalian WNT8B orthologs. Int J Oncol 30(5):1273–1277PubMedGoogle Scholar
  28. Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27(2):253–261. doi: 10.1007/s10555-008-9123-1 PubMedCrossRefGoogle Scholar
  29. Kim YS, Hwan JD, Bae S, Bae DH, Shick WA (2010) Identification of differentially expressed genes using an annealing control primer system in stage III serous ovarian carcinoma. BMC Cancer 10:576. doi: 10.1186/1471-2407-10-576 PubMedCrossRefGoogle Scholar
  30. Kleinberg L, Holth A, Fridman E, Schwartz I, Shih Ie M, Davidson B (2007) The diagnostic role of claudins in serous effusions. Am J Clin Pathol 127(6):928–937. doi: 10.1309/V025QRN3R9CJGNPX PubMedCrossRefGoogle Scholar
  31. Koon HB, Ippolito GC, Banham AH, Tucker PW (2007) FOXP1: a potential therapeutic target in cancer. Expert Opin Ther Targets 11(7):955–965. doi: 10.1517/14728222.11.7.955 PubMedCrossRefGoogle Scholar
  32. Le Page C, Puiffe ML, Meunier L, Zietarska M, de Ladurantaye M, Tonin PN, Provencher D, Mes-Masson AM (2009) BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res 2:4. doi: 10.1186/1757-2215-2-4 PubMedCrossRefGoogle Scholar
  33. Lee SW, Reimer CL, Fang L, Iruela-Arispe ML, Aaronson SA (2000) Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol Cell Biol 20(5):1723–1732PubMedCrossRefGoogle Scholar
  34. Li J, Wood WH 3rd, Becker KG, Weeraratna AT, Morin PJ (2007) Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 26(20):2860–2872. doi: 10.1038/sj.onc.1210086 PubMedCrossRefGoogle Scholar
  35. Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8(4):363–369. doi: 10.1016/j.coph.2008.06.016 PubMedCrossRefGoogle Scholar
  36. Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, Yang X, Wei JJ (2010) HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol 23(5):673–681. doi: 10.1038/modpathol.2010.49 PubMedCrossRefGoogle Scholar
  37. Malki S, Bibeau F, Notarnicola C, Roques S, Berta P, Poulat F, Boizet-Bonhoure B (2007) Expression and biological role of the prostaglandin D synthase/SOX9 pathway in human ovarian cancer cells. Cancer Lett 255(2):182–193. doi: 10.1016/j.canlet.2007.04.007 PubMedCrossRefGoogle Scholar
  38. Mancini F, Moretti F (2009) Mitochondrial MDM4 (MDMX): an unpredicted role in the p53-mediated intrinsic apoptotic pathway. Cell Cycle 8(23):3854–3859PubMedCrossRefGoogle Scholar
  39. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19(8):1745–1754. doi: 10.1093/emboj/19.8.1745 PubMedCrossRefGoogle Scholar
  40. Milde-Langosch K, Hagen M, Bamberger AM, Loning T (2003) Expression and prognostic value of the cell-cycle regulatory proteins, Rb, p16MTS1, p21WAF1, p27KIP1, cyclin E, and cyclin D2, in ovarian cancer. Int J Gynecol Pathol 22(2):168–174PubMedCrossRefGoogle Scholar
  41. Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Hardisson D, Sarrio D, Prat J, Cigudosa JC, Matias-Guiu X, Palacios J (2003) Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 22(38):6115–6118. doi: 10.1038/sj.onc.1206868 PubMedCrossRefGoogle Scholar
  42. Murph MM, Liu W, Yu S, Lu Y, Hall H, Hennessy BT, Lahad J, Schaner M, Helland A, Kristensen G, Borresen-Dale AL, Mills GB (2009) Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS One 4(5):e5583. doi: 10.1371/journal.pone.0005583 PubMedCrossRefGoogle Scholar
  43. National Cancer Institute (2010) Cancer Trends Progress Report 2009/2010 UpdateGoogle Scholar
  44. Ntougkos E, Rush R, Scott D, Frankenberg T, Gabra H, Smyth JF, Sellar GC (2005) The IgLON family in epithelial ovarian cancer: expression profiles and clinicopathologic correlates. Clin Cancer Res 11(16):5764–5768. doi: 10.1158/1078-0432.CCR-04-2388 PubMedCrossRefGoogle Scholar
  45. Petrucelli N, Daly MB, Feldman GL (2010) Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 12(5):245–259. doi: 10.1097/GIM.0b013e3181d38f2f PubMedCrossRefGoogle Scholar
  46. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. doi: 10.1038/nrm908 PubMedCrossRefGoogle Scholar
  47. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9(1):15–21. doi: S0959-437X(99)80003-3 PubMedCrossRefGoogle Scholar
  48. Rattan R, Narita K, Chien J, Maguire JL, Shridhar R, Giri S, Shridhar V (2010) TCEAL7, a putative tumor suppressor gene, negatively regulates NF-kappaB pathway. Oncogene 29(9):1362–1373. doi: 10.1038/onc.2009.431 PubMedCrossRefGoogle Scholar
  49. Roh MH, Yassin Y, Miron A, Mehra KK, Mehrad M, Monte NM, Mutter GL, Nucci MR, Ning G, McKeon FD, Hirsch MS, Wa X, Crum CP (2010) High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression. Mod Pathol 23(10):1316–1324. doi: 10.1038/modpathol.2010.119 PubMedCrossRefGoogle Scholar
  50. Rosen EM, Fan S, Ma Y (2006) BRCA1 regulation of transcription. Cancer Lett 236(2):175–185. doi: 10.1016/j.canlet.2005.04.037 PubMedCrossRefGoogle Scholar
  51. Saha T, Rih JK, Roy R, Ballal R, Rosen EM (2010) Transcriptional regulation of the base excision repair pathway by BRCA1. J Biol Chem 2010:25Google Scholar
  52. Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M (2000) SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 275(15):10738–10744PubMedCrossRefGoogle Scholar
  53. Sheng Z, He J, Tuppen JA, Sun W, Fazili Z, Smith ER, Dong FB, Xu XX (2000) Structure, sequence, and promoter analysis of human disabled-2 gene (DAB2). Genomics 70(3):381–386. doi: 10.1006/geno.2000.6383 S0888-7543(00)96383-3 PubMedCrossRefGoogle Scholar
  54. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, Eppig JJ, Bronson RT, Elledge SJ, Weinberg RA (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384(6608):470–474. doi: 10.1038/384470a0 PubMedCrossRefGoogle Scholar
  55. Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M (2010) Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance. Hum Pathol 41(12):1702–1710. doi: 10.1016/j.humpath.2010.05.002 PubMedCrossRefGoogle Scholar
  56. Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15(6):419–433. doi: 10.1016/j.cytogfr.2004.09.002 PubMedCrossRefGoogle Scholar
  57. Szabo I, Kiss A, Schaff Z, Sobel G (2009) Claudins as diagnostic and prognostic markers in gynecological cancer. Histol Histopathol 24(12):1607–1615PubMedGoogle Scholar
  58. Tashiro H, Miyazaki K, Okamura H, Iwai A, Fukumoto M (1992) c-myc over-expression in human primary ovarian tumours: its relevance to tumour progression. Int J Cancer 50(5):828–833PubMedCrossRefGoogle Scholar
  59. Tinelli A, Malvasi A, Leo G, Vergara D, Pisano M, Ciccarese M, Chiuri VE, Lorusso V (2010) Hereditary ovarian cancers: from BRCA mutations to clinical management. A modern appraisal. Cancer Metastasis Rev 29(2):339–350. doi: 10.1007/s10555-010-9218-3 PubMedCrossRefGoogle Scholar
  60. Tong SY, Ki KD, Lee JM, Kang MJ, Ha TK, Chung SI, Chi SG, Lee SK (2010) Frequent inactivation of hSRBC in ovarian cancers by promoter CpG island hypermethylation. Acta Obstet Gynecol Scand 89(5):629–635. doi: 10.3109/00016341003678443 PubMedCrossRefGoogle Scholar
  61. Tummala R, Wolle D, Barwe SP, Sampson VB, Rajasekaran AK, Pendyala L (2009) Expression of Na, K-ATPase-beta(1) subunit increases uptake and sensitizes carcinoma cells to oxaliplatin. Cancer Chemother Pharmacol 64(6):1187–1194. doi: 10.1007/s00280-009-0985-x PubMedCrossRefGoogle Scholar
  62. Wang D, Kanuma T, Mizumuma H, Ibuki Y, Takenoshita S (2000) Mutation analysis of the Smad6 and Smad7 gene in human ovarian cancers. Int J Oncol 17(6):1087–1091PubMedGoogle Scholar
  63. Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X (2007) SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 67(2):528–536. doi: 10.1158/0008-5472.CAN-06-1672 PubMedCrossRefGoogle Scholar
  64. Weichert W, Gekeler V, Denkert C, Dietel M, Hauptmann S (2003) Protein kinase C isoform expression in ovarian carcinoma correlates with indicators of poor prognosis. Int J Oncol 23(3):633–639PubMedGoogle Scholar
  65. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ (2007) PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 282(35):25604–25612. doi: 10.1074/jbc.M704343200 PubMedCrossRefGoogle Scholar
  66. Wright EM, Snopek B, Koopman P (1993) Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res 21(3):744PubMedCrossRefGoogle Scholar
  67. Wu J, Liu Z, Shao C, Gong Y, Hernando E, Lee P, Narita M, Muller W, Liu J, Wei JJ (2011) HMGA2 overexpression-induced ovarian surface epithelial transformation is mediated through regulation of EMT genes. Cancer Res 71(2):349–359. doi: 10.1158/0008-5472.CAN-10-2550 PubMedCrossRefGoogle Scholar
  68. Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA, Petricoin EF 3rd (2003) Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3(11):2085–2090. doi: 10.1002/pmic.200300591 PubMedCrossRefGoogle Scholar
  69. Wynendaele J, Bohnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S, Sbrzesny N, Kubitza D, Wolf A, Gradhand E, Balschun K, Braicu I, Sehouli J, Darb-Esfahani S, Denkert C, Thomssen C, Hauptmann S, Lund A, Marine JC, Bartel F (2010) An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 70(23):9641–9649. doi: 10.1158/0008-5472.CAN-10-0527 PubMedCrossRefGoogle Scholar
  70. Yang DH, Fazili Z, Smith ER, Cai KQ, Klein-Szanto A, Cohen C, Horowitz IR, Xu XX (2006) Disabled-2 heterozygous mice are predisposed to endometrial and ovarian tumorigenesis and exhibit sex-biased embryonic lethality in a p53-null background. Am J Pathol 169(1):258–267. doi: 10.2353/ajpath.2006.060036 PubMedCrossRefGoogle Scholar
  71. You A, Fokas E, Wang LF, He H, Kleb B, Niederacher D, Engenhart-Cabillic R, An HX (2011) Expression of the Wnt antagonist DKK3 is frequently suppressed in sporadic epithelial ovarian cancer. J Cancer Res Clin Oncol 137(4):621–627. doi: 10.1007/s00432-010-0916-6 PubMedCrossRefGoogle Scholar
  72. Zabouo G, Imbert AM, Jacquemier J, Finetti P, Moreau T, Esterni B, Birnbaum D, Bertucci F, Chabannon C (2009) CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines. Breast Cancer Res 11(1):R1. doi: 10.1186/bcr2215 PubMedCrossRefGoogle Scholar
  73. Zhang Y, Scoumanne A, Chen X (2010) G protein-coupled receptor 87: a promising opportunity for cancer drug discovery. Mol Cell Pharmacol 2(3):111–116PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University School of MedicineWashingtonUSA
  2. 2.Department of Biostatistics, Bioinformatics and BiomathematicsGeorgetown University School of MedicineWashingtonUSA
  3. 3.Department of Biochemistry, Cellular and Molecular BiologyGeorgetown University School of MedicineWashingtonUSA

Personalised recommendations