Functional & Integrative Genomics

, Volume 11, Issue 4, pp 565–583 | Cite as

Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms

  • Tamar Krugman
  • Zvi Peleg
  • Lydia Quansah
  • Véronique Chagué
  • Abraham B. Korol
  • Eviatar Nevo
  • Yehoshua Saranga
  • Aaron Fait
  • Boulos Chalhoub
  • Tzion FahimaEmail author
Original Paper


Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.


Transcriptome Metabolome Triticum turgidum ssp. dicoccoides Roots Water deficit Hormone homeostasis Adaptation 



This project was supported by the Program for Sustainable Agriculture funded by the Israel Ministry of Science (# 01-21-00048), the French Ministry for Foreign Affairs and the French Ministry for Education and Research. We also acknowledge the Israel Science Foundation grant #1089/04 and equipment grants #048/99 and 1478/04. Z. Peleg is indebted to the Israel Council for the Higher Education Postdoctoral Fellowships Award. The authors thank A. Fahum, M. Goldshmit and S. Khalifa for their excellent technical assistance.

Supplementary material

10142_2011_231_MOESM1_ESM.pdf (107 kb)
Figure S1 Quantitative real-time PCR expression patterns of DETS listed in Table S1 (PDF 107 kb)
10142_2011_231_MOESM2_ESM.pdf (19 kb)
Fig. S2 Principal component analysis (PCA) of GC-MS data of two emmer wheat genotypes (R and S) subjected to control (well watered) and drought (withholding water for 7 days). PCA is presented as the combinations of first three dimensions. Rectangle shape filled and not filled represent R control and drought, respectively; circle filled and not filled represent S control and drought, respectively. Values in bracket represent the value of addition of the two components contribution to the variance. Each data point represents an independent sample and biological replicate of at least five samples. (PDF 18 kb)
10142_2011_231_MOESM3_ESM.pdf (15 kb)
Table S1 Probe-set primers of DETs used to validate expression patterns by quantitative real-time PCR (PDF 15 kb)
10142_2011_231_MOESM4_ESM.xlsx (57 kb)
ESM 1 (XLSX 57 kb)
10142_2011_231_MOESM5_ESM.xlsx (48 kb)
ESM 2 (XLSX 48 kb)
10142_2011_231_MOESM6_ESM.xlsx (20 kb)
ESM 3 (XLSX 20 kb)


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  2. Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signalling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193PubMedCrossRefGoogle Scholar
  3. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242PubMedCrossRefGoogle Scholar
  4. Avneri A (2009) Drought resistance and water use efficiency in wild emmer wheat (Triticum turgidum ssp. dicoccoides). M.Sc. dissertation, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem (Hebrew with English abstract)Google Scholar
  5. Baena-González E (2010) Energy signalling in the regulation of gene expression during stress. Mol Plant 3:300–313PubMedCrossRefGoogle Scholar
  6. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  7. Benfey PN, Bennett M, Schiefelbein J (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J 61:992–1000PubMedCrossRefGoogle Scholar
  8. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960PubMedCrossRefGoogle Scholar
  9. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806PubMedCrossRefGoogle Scholar
  10. Breton G, Vazquez-Tello A, Danyluk J, Sarhan F (2000) Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol 41:177–184PubMedGoogle Scholar
  11. Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335PubMedCrossRefGoogle Scholar
  12. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14CrossRefGoogle Scholar
  13. Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327CrossRefGoogle Scholar
  14. Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505PubMedCrossRefGoogle Scholar
  15. Chen H, Xiong L (2010) myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. Biol Chem 285:24238–24247CrossRefGoogle Scholar
  16. Choi DW, Zhu B, Close T (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247CrossRefGoogle Scholar
  17. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701PubMedCrossRefGoogle Scholar
  18. Ciesla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M (2007) Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 27:7693–7702PubMedCrossRefGoogle Scholar
  19. Cui H, Benfey PN (2009) Interplay between SCARECROW, GA and like heterochromatin protein 1 in ground tissue patterning in the Arabidopsis root. Plant J 58:1016–1027PubMedCrossRefGoogle Scholar
  20. Day RB, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi-Tanaka M, Matsuoka M, Kaku H, Shibuya N, Minami E (2004) Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signalling in rice cells. Plant Mol Biol 54:261–272PubMedCrossRefGoogle Scholar
  21. Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149:354–369PubMedCrossRefGoogle Scholar
  22. Elbein AD, Pan Y, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiol 13:17RCrossRefGoogle Scholar
  23. Erban A, Schauer N, Fernie AR, Kopka J (2006) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Methods Mol Biol 358:19–38CrossRefGoogle Scholar
  24. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Sustainable Agric 1:153–188CrossRefGoogle Scholar
  25. Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The world wheat book. Lavoisier Technical and Doc, Paris, pp 3–56Google Scholar
  26. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261PubMedCrossRefGoogle Scholar
  27. Foito A, Byrne SL, Shepherd T, Stewart D, Barth S (2009) Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotech J 7:719–732CrossRefGoogle Scholar
  28. Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, Busov VB (2010) Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 22:623–639PubMedCrossRefGoogle Scholar
  29. Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17:1–9PubMedCrossRefGoogle Scholar
  30. Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392PubMedCrossRefGoogle Scholar
  31. Herder GD, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607CrossRefGoogle Scholar
  32. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803CrossRefGoogle Scholar
  33. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedCrossRefGoogle Scholar
  34. Hopper AK, Shaheen HH (2008) A decade of surprises for tRNA nuclear–cytoplasmic dynamics. Trends Cell Biol 18:98–104PubMedCrossRefGoogle Scholar
  35. Huang J, Wang MM, Bao YM, Sun SJ, Pan LJ, Zhang HS (2008) SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 424:71–79PubMedCrossRefGoogle Scholar
  36. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487PubMedCrossRefGoogle Scholar
  37. Hugouvieux V, Murata Y, Young JJ, Kwak JM, Mackesy DZ, Schroeder JI (2002) Localization, ion channel regulation, and genetic interactions during abscisic acid signalling of the nuclear mRNA cap-binding protein, ABH1. Plant Physiol 130:1276–1287PubMedCrossRefGoogle Scholar
  38. Iglesias MJ, Terrile MC, Bartoli CG, D’Ippólito S, Casalongué CA (2010) Auxin signaling ‎participates in the adaptative response against oxidative stress and salinity by interacting ‎with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222PubMedCrossRefGoogle Scholar
  39. Jia Q, Zhang J, Westcott S, Zhang XQ, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262PubMedCrossRefGoogle Scholar
  40. Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263PubMedCrossRefGoogle Scholar
  41. Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiol 151:1758–1768PubMedCrossRefGoogle Scholar
  42. Kamiya N, Itoh JI, Morikami A, Nagato Y, Matsuoka M (2003) The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J 36:45–54PubMedCrossRefGoogle Scholar
  43. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234PubMedCrossRefGoogle Scholar
  44. Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145:814–830PubMedCrossRefGoogle Scholar
  45. Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis 1. Plant Physiol 134:1697–1707PubMedCrossRefGoogle Scholar
  46. Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410PubMedCrossRefGoogle Scholar
  47. Krugman T, Chagué V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B, Fahima T (2010) Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct Integr Genomic 10:167–186CrossRefGoogle Scholar
  48. Kuhn J, Hugouvieux V, Schroeder J (2008) mRNA cap binding proteins: effects on abscisic acid signal transduction, mRNA processing, and microarray analyses. Curr Top Microbiol Immunol 326:139–150PubMedCrossRefGoogle Scholar
  49. Kwapisz M, Smagowicz WJ, Oficjalska D, Hatin I, Rousset JP, Żołądek T, Boguta M (2002) Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-Δ mutant of Saccharomyces cerevisiae. Curr Genet 42:147–152PubMedCrossRefGoogle Scholar
  50. Lee TG, Jang CS, Kim JY, Kim DS, Park JH, Kim DY, Seo YW (2007) A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses. Physiol Plant 129:375–385CrossRefGoogle Scholar
  51. Lee S, Woo YM, Ryu SI, Shin YD, Kim WT, Park KY, Lee IJ, An G (2008a) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147:156–168PubMedCrossRefGoogle Scholar
  52. Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y (2008b) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635PubMedCrossRefGoogle Scholar
  53. Legay S, Lefèvre I, Lamoureux D, Barreda C, Tincopa R, Raymundo L, Quiroz R, Hoffmann L, Hausman JF, Bonierbale M, Evers D, Schafleitner R (2011) Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.). Funct Integr Genomic 11:275–291Google Scholar
  54. Lehmann M, Schwarzlander M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge T, Fricker MD, Moller BL, Fernie AR (2009) The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant 2:390–406PubMedCrossRefGoogle Scholar
  55. Levi A, Paterson AH, Cakmak I, Saranga Y (2011) Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol Plant 141:265–275PubMedCrossRefGoogle Scholar
  56. Levin M, Resnick N, Rosianskey Y, Kolotilin I, Wininger S, Lemcoff JH, Cohen S, Galili G, Koltai H, Kapulnik Y (2009) Transcriptional profiling of Arabidopsis thaliana plants’ response to low relative humidity suggests a shoot–root communication. Plant Sci 177:450–459CrossRefGoogle Scholar
  57. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396PubMedCrossRefGoogle Scholar
  58. López-Carbonell M, Jáuregui O (2005) A rapid method for the analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiol Biochem 43:407–411PubMedCrossRefGoogle Scholar
  59. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615PubMedCrossRefGoogle Scholar
  60. Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24:732–737PubMedCrossRefGoogle Scholar
  61. Malamy J (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77PubMedCrossRefGoogle Scholar
  62. Manschadi AM, Hammer GL, Christopher JT, Devoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129CrossRefGoogle Scholar
  63. Mashiguchi K, Urakami E, Hasegawa M, Sanmiya K, Matsumoto I, Yamaguchi I, Asami T, Suzuki Y (2008) Defense-related signalling by interaction of arabinogalactan proteins and β-glucosyl Yariv reagent inhibits gibberellin signalling in barley aleurone cells. Plant Cell Physiol 49:178–190PubMedCrossRefGoogle Scholar
  64. Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431CrossRefGoogle Scholar
  65. Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A (2007) Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216PubMedCrossRefGoogle Scholar
  66. Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol–4–phosphate 5–kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568PubMedCrossRefGoogle Scholar
  67. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462CrossRefGoogle Scholar
  68. Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) ‎GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of ‎Arabidopsis roots. Plant Physiol 149:835–840PubMedCrossRefGoogle Scholar
  69. Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y (2009) Structural basis of abscisic acid signalling near-final version. Nature 462:609–614PubMedCrossRefGoogle Scholar
  70. Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669PubMedCrossRefGoogle Scholar
  71. Murase K, Hirano Y, Sun T, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463PubMedCrossRefGoogle Scholar
  72. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes ‎through largely nonoverlapping transcriptional responses. Cell 126:467–475PubMedCrossRefGoogle Scholar
  73. Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, BerlinGoogle Scholar
  74. Nibau C, Gibbs D, Coates J (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614PubMedCrossRefGoogle Scholar
  75. Noiraud N, Maurousset L, Lemoine R (2001) Transport of polyols in higher plants. Plant Physiol Biochem 39:717–728CrossRefGoogle Scholar
  76. Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AMO, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622PubMedCrossRefGoogle Scholar
  77. Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe RG, Sweetlove LJ, Fernie AR (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106PubMedCrossRefGoogle Scholar
  78. Okamoto M, Tsuboi Y, Chikayama E, Kikuchi J, Hirayama T (2009) Metabolic movement upon abscisic acid and salicylic acid combined treatments. Plant Biotech 26:551–560CrossRefGoogle Scholar
  79. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11PubMedCrossRefGoogle Scholar
  80. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedGoogle Scholar
  81. Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806PubMedCrossRefGoogle Scholar
  82. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Op Plant Biol. doi: 10.1016/j.pbi.2011.02.001
  83. Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191CrossRefGoogle Scholar
  84. Peleg Z, Fahima T, Saranga Y (2007) Drought resistance in wild emmer wheat: physiology, ecology, and genetics. Israel J Plant Sci 55:289–296CrossRefGoogle Scholar
  85. Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat RIL population. Plant Cell Environ 10:1365–3040Google Scholar
  86. Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (2002) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119CrossRefGoogle Scholar
  87. Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70PubMedCrossRefGoogle Scholar
  88. Ranford JC, Bryce JH, Morris PC (2002) PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy. Exp Bot 53:147–148CrossRefGoogle Scholar
  89. Rao SR, Ford KL, Cassin AM, Roessner U, Patterson JH, Bacic A (2010) Proteomic and metabolic profiling of rice suspension culture cells as a model to study abscisic acid (ABA) signalling response pathways in plants. Proteome Res 9:6623–6634CrossRefGoogle Scholar
  90. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedCrossRefGoogle Scholar
  91. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2004) TM4: a free, open-source system for microarray data management and analysis. Bio-technique 34:374–378Google Scholar
  92. Saeed AI, Hagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li JW, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. In: DNA microarrays, part B: databases and statistics vol 411. Academic, New York, pp 134–193Google Scholar
  93. Schauer N, Zamir, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56:297–307PubMedCrossRefGoogle Scholar
  94. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854PubMedCrossRefGoogle Scholar
  95. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330PubMedCrossRefGoogle Scholar
  96. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302PubMedCrossRefGoogle Scholar
  97. Seo PJ, Park CM (2009) Auxin homeostasis during lateral root development under drought condition. Plant Signalling Behav 4:1002–1004CrossRefGoogle Scholar
  98. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signalling during drought stress response in Arabidopsis. Plant Physiol 151:275–289PubMedCrossRefGoogle Scholar
  99. Sienkiewicz-Porzucek A, Nunes-Nesi A, Sulpice R, Lisec J, Centeno DC, Carillo P, Leisse A, Urbanczyk-Wochniak E, Fernie AR (2008) Mild reductions in mitochondrial citrate synthase activity result in a compromised nitrate assimilation and reduced leaf pigmentation but have no effect on photosynthetic performance or growth. Plant Physiol 147:115–127PubMedCrossRefGoogle Scholar
  100. Skern R, Frost P, Nilsen F (2005) Relative transcript quantification by quantitative PCR: roughly right or precisely wrong? BMC Mol Biol 6:10PubMedCrossRefGoogle Scholar
  101. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–141PubMedCrossRefGoogle Scholar
  102. Studart-Guimarães FA, Nunes-Nesi A, Carrari F, Usadel B, Fernie AR (2007) Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation of the γ-aminobutyrate shunt in illuminated tomato leaves. Plant Physiol 145:626–639PubMedCrossRefGoogle Scholar
  103. Sun T (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570PubMedCrossRefGoogle Scholar
  104. Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308CrossRefGoogle Scholar
  105. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  106. Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Perez-Ruiz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192PubMedCrossRefGoogle Scholar
  107. Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917PubMedCrossRefGoogle Scholar
  108. Thornton TM, Swain SM, Olszewski NE (1999) Gibberellin signal transduction presents… the SPY who O-GlcNAc’d me. Trends Plant Sci 4:424–428PubMedCrossRefGoogle Scholar
  109. Ubeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GTS, Hedden P, Bhalerao R, Bennett MJ (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10:625–628PubMedCrossRefGoogle Scholar
  110. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M (2009) Characterization of the ABA–regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078PubMedCrossRefGoogle Scholar
  111. van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4:50PubMedCrossRefGoogle Scholar
  112. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525PubMedCrossRefGoogle Scholar
  113. Wojciechowski T, Gooding M, Ramsay L, Gregory P (2009) The effects of dwarfing genes on seedling root growth of wheat. J Exp Bot 60:2565–2573PubMedCrossRefGoogle Scholar
  114. Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317PubMedCrossRefGoogle Scholar
  115. Xu H, Li Y, Yan Y, Wang K, Gao Y, Hu Y (2010) Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 10:197PubMedCrossRefGoogle Scholar
  116. Yamaguchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, Seo M, Kamiya Y, Yamaguchi S (2007) Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol 48:555–561PubMedCrossRefGoogle Scholar
  117. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25PubMedGoogle Scholar
  118. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signalling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tamar Krugman
    • 1
  • Zvi Peleg
    • 1
    • 5
  • Lydia Quansah
    • 2
  • Véronique Chagué
    • 3
  • Abraham B. Korol
    • 1
  • Eviatar Nevo
    • 1
  • Yehoshua Saranga
    • 4
  • Aaron Fait
    • 2
  • Boulos Chalhoub
    • 3
  • Tzion Fahima
    • 1
    Email author
  1. 1.Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
  2. 2.Blaustein Institute for Desert Research, Department of Dryland BiotechnologyBen Gurion University of the NegevMidreshet Ben GurionIsrael
  3. 3.Organisation and Evolution of Plant GenomesUnité de Recherche en Génomique Végétale (URGV)EvryFrance
  4. 4.The Robert H. Smith Institute of Plant Science and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
  5. 5.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations