Advertisement

Functional & Integrative Genomics

, Volume 11, Issue 1, pp 103–110 | Cite as

A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley

  • Hongxia Ye
  • Xiao-Qi Zhang
  • Sue Broughton
  • Sharon Westcott
  • Dianxing WuEmail author
  • Reg Lance
  • Chengdao LiEmail author
Original Paper

Abstract

Low phytic acid grains can provide a solution to dietary micronutrient deficiency and environmental pollution. A low phytic acid 1-1 (lpa1-1) barley mutant was identified using forward genetics and the mutant gene was mapped to chromosome 2HL. Comparative genomic analysis revealed that the lpa1-1 gene was located in the syntenic region of the rice Os-lpa-MH86-1 gene on chromosome 4. The gene ortholog of rice Os-lpa-MH86-1 (designated as HvST) was isolated from barley using polymerase chain reaction and mapped to chromosome 2HL in a doubled haploid population of Clipper×Sahara. The results demonstrate the collinearity between the rice Os-lpa-MH86-1 gene and the barley lpa1-1 region. Sequence analysis of HvST revealed a single base pair substitution (C→T transition) in the last exon of the gene in lpa1-1 (M422), which resulted in a nonsense mutation. These results will facilitate our understanding of the molecular mechanisms controlling the low phytic acid phenotype and assist in the development of a diagnostic marker for the selection of the lpa1-1 gene in barley.

Keywords

Comparative mapping Candidate gene Rice Barley HvST 

Notes

Acknowledgement

This project is supported by the Australian Grains Research & Development Corporation, the Chinese Ministry of Agriculture (2008ZX08001-006, 2010-S26), Research Contract of International Atomic Energy Agency (CPR15422), and Natural Science Foundation of China (30828023).

References

  1. Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Funct Integr Genomics 3:1–24. doi: 10.1007/s10142-002-0073-3 PubMedGoogle Scholar
  2. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. doi: 10.1007/BF02672069 CrossRefGoogle Scholar
  3. Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E (2009) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221. doi: 10.1007/s00122-009-0975-8 PubMedCrossRefGoogle Scholar
  4. Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62:691–706PubMedCrossRefGoogle Scholar
  5. Gillman JD, Pantalone VR, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190CrossRefGoogle Scholar
  6. Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E (2003) Identification and characterization of a low phytic acid wheat. Crop Sci 44:418–424CrossRefGoogle Scholar
  7. Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family—redundancy or specialization? Physiol Plant 117:155–163CrossRefGoogle Scholar
  8. Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660. doi: 10.1104/Pp.010585 PubMedCrossRefGoogle Scholar
  9. Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, Li CD (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262. doi: 10.1007/s10142-009-0120-4 PubMedCrossRefGoogle Scholar
  10. Karakousis A, Barr AR, Kretschmer JM, Manning S, Jefferies SP, Chalmers KJ, Islam AKMR, Langridge P (2003) Mapping and QTL analysis of the barley population Clipper x Sahara. Aust J Agric Res 54:1137–1140CrossRefGoogle Scholar
  11. Kim SI, Andaya CB, Goyal SS, Tai TH (2008a) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779. doi: 10.1007/s00122-008-0818-z PubMedCrossRefGoogle Scholar
  12. Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH (2008b) Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet 117:1291–1301. doi: 10.1007/s00122-008-0863-7 PubMedCrossRefGoogle Scholar
  13. Kuraparthy V, Sood S, Gill BS (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics 8:33–42. doi: 10.1007/s10142-007-0057-4 PubMedCrossRefGoogle Scholar
  14. Larson SR, Young KA, Cook A, Blake TK, Raboy V (1998) Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor Appl Genet 97:141–146CrossRefGoogle Scholar
  15. Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405CrossRefGoogle Scholar
  16. Li CD, Ni PX, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice–wheat–barley comparison. Funct Integr Genomics 4:84–93. doi: 10.1007/s10142-004-0104-3 PubMedCrossRefGoogle Scholar
  17. Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814. doi: 10.1007/s00122-006-0478-9 PubMedCrossRefGoogle Scholar
  18. Manly KF (1993) A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome 4:303–313Google Scholar
  19. Oliver RE, Yang C, Hu G, Raboy V, Zhang M (2009) Identification of PCR-based DNA markers flanking three low phytic acid mutant loci in barley. J. Plant Breed. Crop Sci. 1:087–093Google Scholar
  20. Pilu R, Panzeri D, Gavazzi G, Rasmussen SK, Consonni G, Nielsen E (2003) Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet 107:980–987. doi: 10.1007/s00122-003-1316-y PubMedCrossRefGoogle Scholar
  21. Raboy A (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic, Dordrecht, pp 441–477Google Scholar
  22. Raboy V (2001) Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462PubMedCrossRefGoogle Scholar
  23. Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368PubMedCrossRefGoogle Scholar
  24. Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158:489–497CrossRefGoogle Scholar
  25. Ren XL, Liu QL, Fu HW, Wu DX, Shu QY (2007) Density alteration of nutrient elements in rice grains of a low phytate mutant. Food Chem 102:1400–1406. doi: 10.1016/j.foodchem.2006.05.065 CrossRefGoogle Scholar
  26. Roslinsky V, Eckstein PE, Raboy V, Rossnagel BG, Scoles GJ (2007) Molecular marker development and linkage analysis in three low phytic acid barley (Hordeum vulgare) mutant lines. Mol Breed 20:323–330. doi: 10.1007/s11032-007-9094-x CrossRefGoogle Scholar
  27. Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085. doi: 10.1007/s00122-006-0209-2 PubMedCrossRefGoogle Scholar
  28. Shi JR, Wang HY, Wu YS, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515. doi: 10.1104/Pp.014258 PubMedCrossRefGoogle Scholar
  29. Shi JR, Wang HY, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719. doi: 10.1111/j.1365-313X.2005.02412.x PubMedCrossRefGoogle Scholar
  30. Shi JR, Wang HY, Schellin K, Li BL, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937. doi: 10.1038/Nbt1322 PubMedCrossRefGoogle Scholar
  31. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612–12617. doi: 10.1073/pnas.0504172102 PubMedCrossRefGoogle Scholar
  32. Suzuki M, Tanaka K, Kuwano M et al (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sartiva L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64. doi: 10.1016/j.gene.2007.09.006 PubMedCrossRefGoogle Scholar
  33. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19PubMedCrossRefGoogle Scholar
  34. Vidmar JJ, Schjoerring JK, Touraine B, Glass ADM (1999) Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare. Plant Mol Biol 40:883–892PubMedCrossRefGoogle Scholar
  35. Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605CrossRefGoogle Scholar
  36. Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An GH, Shu QY (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83. doi: 10.1007/s00122-009-1018-1 PubMedCrossRefGoogle Scholar
  37. Yang XQ, Westcott S, Gong X, Evans E, Zhang XQ, Lance R, Li CD (2009) Alleles of limit dextrinase gene associated with the enzyme thermostability in barley. Mol Breed 23:61–74CrossRefGoogle Scholar
  38. Yuan FJ, Zhao HJ, Ren XL, Zhu SL, Fu XJ, Shu QY (2007) Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet 115:945–957. doi: 10.1007/s00122-007-0621-2 PubMedCrossRefGoogle Scholar
  39. Zhao HJ, Liu QL, Fu HW, Xu XH, Wu DX, Shu QY (2008a) Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res 108:206–211. doi: 10.1016/j.fcr.2008.05.006 CrossRefGoogle Scholar
  40. Zhao HJ, Liu QL, Ren XL, Wu DX, Shu QY (2008b) Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breed 22:603–612. doi: 10.1007/s11032-008-9202-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hongxia Ye
    • 1
    • 2
    • 4
  • Xiao-Qi Zhang
    • 3
  • Sue Broughton
    • 2
  • Sharon Westcott
    • 2
  • Dianxing Wu
    • 1
    Email author
  • Reg Lance
    • 2
  • Chengdao Li
    • 2
    • 3
    Email author
  1. 1.State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear–Agricultural SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Agriculture and FoodGovernment of Western AustraliaSouth PerthAustralia
  3. 3.The State Agricultural Biotechnology CentreMurdoch UniversityPerthAustralia
  4. 4.Huzhou Academy of Agricultural SciencesHuzhouPeople’s Republic of China

Personalised recommendations