Advertisement

Functional & Integrative Genomics

, Volume 11, Issue 1, pp 85–93 | Cite as

Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.)

  • Youwei Sun
  • Zhonghu He
  • Wujun Ma
  • Xianchun Xia
Original Paper

Abstract

Polyphenol oxidase (PPO) plays a crucial role in browning reactions in fresh and processed fruits and vegetables, as well as products made from cereal grains. Common wheat (Triticum aestivum L.) has a large genome, representing an interesting system to advance our understanding of plant PPO gene expression, regulation and function. In the present study, we characterized the expression of Ppo-A1, a major PPO gene located on wheat chromosome 2A, using DNA sequencing, semi-quantitative RT-PCR, PPO activity assays and whole-grain staining methods during grain development. The results indicated that the expression of the Ppo-A1b allele was regulated by alternative splicing of pre-mRNAs, resulting from a 191-bp insertion in intron 1 and one C/G SNP in exon 2. Eight mRNA isoforms were identified in developing grains based on alignments between cDNA and genomic DNA sequences. Only the constitutively spliced isoform b encodes a putative full-length PPO protein based on its coding sequence whereas the other seven spliced isoforms, a, c, d, e, f, g and h, have premature termination codons resulting in potential nonsense-mediated mRNA decay. The differences in expression of Ppo-A1a and Ppo-A1b were confirmed by PPO activity assays and whole grain staining, providing direct evidence for the influence of alternative splicing in the coding region of Ppo-A1 on polyphenol oxidase activity in common wheat grains.

Keywords

Alternative splicing Nonsense-mediated mRNA decay Premature termination codon PPO gene 

Notes

Acknowledgements

The authors are grateful to the critical review of this manuscript by Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney. This study was supported by the National Science Foundation of China (30871522 and 30830072), National Basic Research Program (2009CB118300), National 863 Program (2006AA10Z1A7 and 2006AA100102) and International Collaboration Project (2006-G2) from the Chinese Ministry of Agriculture.

References

  1. Anderson JV, Morris CF (2001) An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Sci 41:1697–1705CrossRefGoogle Scholar
  2. Anderson JV, Morris CF (2003) Purification and analysis of wheat grain polyphenol oxidase (PPO) protein. Cereal Chem 80:135–143. doi: 10.1094/cchem.2003.80.2.135 CrossRefGoogle Scholar
  3. Anderson JV, Fuerst EP, Hurkman WJ, Vensel WH, Morris CF (2006) Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases. J Cereal Sci 44:353–367. doi: 10.1016/j.jcs.2006.06.008 CrossRefGoogle Scholar
  4. Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47(3):480–489. doi: 10.1111/j.1365-313x.2006.02802.x PubMedCrossRefGoogle Scholar
  5. Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18(9):1381–1392. doi: 10.1101/gr.053678.106 PubMedCrossRefGoogle Scholar
  6. Bhattacharya M, Luo Q, Corke H (1999) Time-dependent changes in dough color in hexaploid wheat landraces differing in polyphenol oxidase activity. J Agric Food Chem 47(9):3579–3585. doi: 10.1021/jf990041i PubMedCrossRefGoogle Scholar
  7. Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7:327. doi: 10.1186/1471-2164-7-327 PubMedCrossRefGoogle Scholar
  8. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40(6):800–804. doi: 10.1038/ng.144 PubMedCrossRefGoogle Scholar
  9. Demeke T, Morris CF, Campbell KG, King GE, Anderson JA, Chang HG (2001) Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci 41(6):1750–1757CrossRefGoogle Scholar
  10. Du X, Qian X, Wang D, Yang J (2006) Alternative splicing and expression analysis of OsFCA (FCA in Oryza sativa L.), a gene homologous to FCA in Arabidopsis. DNA Seq 17(1):31–40. doi: 10.1080/10425170500136707 PubMedGoogle Scholar
  11. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81(2):77–91. doi: 10.1266/ggs.81.77 PubMedCrossRefGoogle Scholar
  12. Feillet P, Autran JC, Icard-Vernière C (2000) Mini review pasta brownness: an assessment. J Cereal Sci 32(3):215–233. doi: 10.1006/jcrs.2000.0326 CrossRefGoogle Scholar
  13. Filichkin S, Priest H, Givan S, Shen R, Bryant D, Fox S, Wong W, Mockler T (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45–58. doi: 10.1101/gr.093302.109 PubMedCrossRefGoogle Scholar
  14. Flurkey WH (1986) Polyphenoloxidase in higher plants: immunological detection and analysis of in vitro translation products. Plant Physiol 81(2):614–618PubMedCrossRefGoogle Scholar
  15. Flurkey WH, Inlow JK (2008) Proteolytic processing of polyphenol oxidase from plants and fungi. J Inorg Biochem 102:2160–2170. doi: 10.1016/j.jinorgbio.2008.08.007 PubMedCrossRefGoogle Scholar
  16. Fuerst EP, Xu SS, Beecher B (2008) Genetic characterization of kernel polyphenol oxidases in wheat and related species. J Cereal Sci 48:359–368. doi: 10.1016/j.jcs.2007.10.003 CrossRefGoogle Scholar
  17. Gelder CWGV, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45(7):1309–1323. doi: 10.1016/S0031-9422(97)00186-6 PubMedCrossRefGoogle Scholar
  18. Gorlach J, Raesecke HR, Abel G, Wehrli R, Amrhein N, Schmid J (1995) Organ-specific differences in the ratio of alternatively spliced chorismate synthase (LeCS2) transcripts in tomato. Plant J 8(3):451–456. doi: 10.1046/j.1365-313X.1995.08030451.x PubMedCrossRefGoogle Scholar
  19. He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC (2007) Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115(1):47–58. doi: 10.1007/s00122-007-0539-8 PubMedCrossRefGoogle Scholar
  20. He XY, He ZH, Morris CF, Xia XC (2009) Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. Genet Resour Crop Ev 56(3):311–321. doi: 10.1007/s10722-008-9365-3 CrossRefGoogle Scholar
  21. Hiller M, Zhang Z, Backofen R, Stamm S (2007) Pre-mRNA secondary structures influence exon recognition. PLoS Genet 3(11):e204. doi: 10.1371/journal.pgen.0030204 PubMedCrossRefGoogle Scholar
  22. Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9(3):363–376. doi: 10.1007/s10142-009-0121-3 PubMedCrossRefGoogle Scholar
  23. Huang X, Lu G, Zhao Q, Liu X, Han B (2008) Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiol 148(1):25–40. doi: 10.1104/pp.108.121491 PubMedCrossRefGoogle Scholar
  24. Jukanti AK, Bruckner PL, Fischer AM (2004) Evaluation of wheat polyphenol oxidase genes. Cereal Chem 81(4):481–485. doi: 10.1094/cchem.2004.81.4.481 CrossRefGoogle Scholar
  25. Jukanti AK, Bruckner PL, Fischer AM (2006) Molecular and biochemical characterisation of polyphenol oxidases in developing kernels and senescing leaves of wheat (Triticum aestivum). Funct Plant Bio 33(7):685–696. doi: 10.1071/FP06050 CrossRefGoogle Scholar
  26. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Mol Biol 5(12):1084–1090. doi: 10.1038/4193 CrossRefGoogle Scholar
  27. Kopriva S, Cossu R, Bauwe H (1995) Alternative splicing results in two different transcripts for H-protein of the glycine cleavage system in the C4 species Flaveria trinervia. Plant J 8:435–441. doi: 10.1046/j.1365-313X.1995.08030435.x PubMedCrossRefGoogle Scholar
  28. Lee JH, Cho YS, Yoon HS, Suh MC, Moon J, Lee I, Weigel D, Yun CH, Kim JK (2005) Conservation and divergence of FCA function between Arabidopsis and rice. Plant Mol Biol 58(6):823–838. doi: 10.1007/s11103-005-8105-8 PubMedCrossRefGoogle Scholar
  29. Leprince A, Grandbastien M, Meyer C (2001) Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol Biol 47(4):533–541. doi: 10.1023/A:1011846910918 CrossRefGoogle Scholar
  30. Li H, Zhang P, Zhai X, He Z, Xia X (2006) A method for rapid isolation of high-quality total RNA from wheat seeds. Mol Plant Breed 4(6):877–881Google Scholar
  31. Liu F, Xu W, Tan L, Xue Y, Sun C, Su Z (2008) Case study for identification of potentially indel-caused alternative expression isoforms in the rice subspecies japonica and indica by integrative genome analysis. Genomics 91(2):186–194. doi: 10.1016/j.ygeno.2007.10.001 PubMedCrossRefGoogle Scholar
  32. Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MHL, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5(4):160–167. doi: 10.1016/S1360-1385(00)01595-8 PubMedCrossRefGoogle Scholar
  33. Luehrsen K, Walbot V (1992) Insertion of non-intron sequence into maize introns interferes with splicing. Nucleic Acids Res 20(19):5181–5187PubMedCrossRefGoogle Scholar
  34. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5(2):89–99PubMedCrossRefGoogle Scholar
  35. Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9(6):967–978PubMedCrossRefGoogle Scholar
  36. Mastrangelo A, Belloni S, Barilli S, Ruperti B, Di Fonzo N, Stanca A, Cattivelli L (2005) Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta 221(5):705–715. doi: 10.1007/s00425-004-1475-3 PubMedCrossRefGoogle Scholar
  37. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67(21):2318–2331. doi: 10.1016/j.phytochem.2006.08.006 PubMedCrossRefGoogle Scholar
  38. Mayer AM, Harel E (1979) Polyphenol oxidase in plants. Phytochemistry 18:193–215. doi: 10.1016/0031-9422(79)80057-6 CrossRefGoogle Scholar
  39. Palusa SG, Ali GS, Reddy ASN (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49(6):1091–1107. doi: 10.1111/j.1365-313X.2006.03020.x PubMedCrossRefGoogle Scholar
  40. Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22(12):3142–3152. doi: 10.1126/stke.2003.188.tw243 PubMedCrossRefGoogle Scholar
  41. Raman R, Raman H, Johnstone K, Lisle C, Smith A, Martin P, Allen H (2005) Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat (Triticum aestivum L.). Funct Integr Genomics 5(4):185–200. doi: 10.1007/s10142-005-0144-3 PubMedCrossRefGoogle Scholar
  42. Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58(1):267–294. doi: 10.1146/annurev.arplant.58.032806.103754 PubMedCrossRefGoogle Scholar
  43. Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl Acids Res 15(17):7155–7174PubMedCrossRefGoogle Scholar
  44. Simeone R, Pasqualone A, Clodoveo ML, Blanco A (2002) Genetic mapping of polyphenol oxidase in tetraploid wheat. Cell Mol Biol Lett 7(2B):763–769PubMedGoogle Scholar
  45. Sommer A, Ne’eman E, Steffens JC, Mayer AM, Harel E (1994) Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol 105(4):1301–1311PubMedCrossRefGoogle Scholar
  46. Sugliani M, Brambilla V, Clerkx EJM, Koornneef M, Soppe WJJ (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell. doi: 10.1105/tpc.110.074674 PubMedGoogle Scholar
  47. Sun DJ, He ZH, Xia XC, Zhang LP, Morris CF, Appels R, Ma WJ, Wang H (2005) A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed 16:209–218. doi: 10.1007/s11032-005-6618-0 CrossRefGoogle Scholar
  48. Varagona M, Purugganan M, Wessler S (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4(7):811–820PubMedCrossRefGoogle Scholar
  49. Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 103(18):7175–7180. doi: 10.1073/pnas.0602039103 PubMedCrossRefGoogle Scholar
  50. Wang BB, O’Toole M, Brendel V, Young ND (2008) Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol 8:17. doi: 10.1186/1471-2229-8-17 PubMedCrossRefGoogle Scholar
  51. Warf MB, Berglund JA (2010) Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 35(3):169–178. doi: 10.1016/j.tibs.2009.10.004 PubMedCrossRefGoogle Scholar
  52. Warnefors M, Pereira V, Eyre-Walker A (2010) Transposable elements: insertion pattern and impact on gene expression evolution in hominids. Mol Biol Evol. doi: 10.1093/molbev/msq1084 PubMedGoogle Scholar
  53. Yu Y, Tang T, Qian Q, Wang YG, Yan M, Zeng D, Han B, Wu CI, Shi S, Li J (2008) Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20:2946–2959. doi: 10.1105/tpc.108.060426 PubMedCrossRefGoogle Scholar
  54. Zhang LP, Ge XX, He ZH, Wang DS, Yan J, Xia XC, SM W (2005) Mapping QTLs for polyphenol oxidase activity in a dh population from common wheat. Acta Agronomica Sin 1:7–10Google Scholar
  55. Zhang XC, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145(4):1577–1587. doi: 10.1104/pp.107.108720 PubMedCrossRefGoogle Scholar
  56. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31(13):3406–3415. doi: 10.1093/nar/gkg595 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Crop Science, National Wheat Improvement Centre/The National Key Facility for Crop Gene Resources and Genetic ImprovementChinese Academy of Agricultural Sciences (CAAS)BeijingChina
  2. 2.International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAASBeijingChina
  3. 3.Department of Agriculture and Food Western Australia Centre for Comparative GenomicsMurdoch UniversityPerthAustralia

Personalised recommendations