Advertisement

Functional & Integrative Genomics

, Volume 11, Issue 2, pp 203–213 | Cite as

Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine

  • Jin Yu
  • Fenghua Liu
  • Peng Yin
  • Xiaoyu Zhu
  • Guiling Cheng
  • Nin Wang
  • An Lu
  • Weili Luan
  • Nuowei Zhang
  • Jiefeng Li
  • Kaijun Guo
  • Yulong Yin
  • Huichuan Wang
  • Jianqin Xu
Original Paper

Abstract

The molecular mechanisms underlying the pathophysiology of heat stress in the small intestine remain undefined. Furthermore, little information is available concerning changes in microRNA (miRNA) expression following heat stress. The present study sought to evaluate miRNA and mRNA expression profiles in the rat small intestine in response to heat stress. Male Sprague–Dawley rats were subjected to 2 h of heat stress daily for ten consecutive days. Rats were sacrificed at specific time points immediately following heat treatment, and morphological changes in the small intestine were determined. The miRNA and mRNA expression profiles from sample of small intestine were evaluated by microarray analysis. Heat stress caused pronounced morphological damage in the rat small intestine, most severe within the jejunum after 3 days of heat treatment. A mRNA microarray analysis found 270 genes to be up-regulated and 122 genes down-regulated (P ≤ 0.01, ≥2.0-fold change) in the jejunum after heat treatment. A miRNA microarray analysis found 18 miRNAs to be up-regulated and 11 down-regulated in the jejunum after heat treatment (P ≤ 0.05). Subsequent bioinformatic analyses of the differentially expressed mRNAs and miRNAs were carried out to integrate miRNA and mRNA expression and revealed that alterations in mRNA following heat stress were negatively correlated with miRNA expression. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of heat stress-induced injury in the small intestine, specifically with regard to miRNAs.

Keywords

Heat stress Damage miRNAs mRNA Small intestine Microarray Rat 

Notes

Acknowledgments

Thanks is extended to the members of CAU-BUA TCVM teaching and research team. This work was supported by grants from the National Natural Science Foundation of China (No.30771566), Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, Innovation Fund for Graduate Student of China Agricultural University (KYCX2010056), Beijing Natural Science Foundation (No.6082007), and the National Eleventh Five-Year Scientific and Technological Support Plan (No. 2008BADB4B01, 2008BADB4B07).

Supplementary material

10142_2010_198_MOESM1_ESM.doc (112 kb)
Fig. 1 Weight gain and feed intake. Weight gain of the heat stress group was lower than the control group. Feed intake of the heat treatment group decreased and was lowest on the fifth day; and then it increased gradually, finally recovered to the same level as the control group (DOC 112 kb)
10142_2010_198_MOESM2_ESM.doc (66 kb)
Fig. 2 RNA quality control (DOC 66 kb)
10142_2010_198_MOESM3_ESM.doc (507 kb)
Fig. 3 Image of mRNA microarray (DOC 507 kb)
10142_2010_198_MOESM4_ESM.doc (148 kb)
Fig. 4 Image of microRNA microarray (DOC 148 kb)
10142_2010_198_MOESM5_ESM.doc (72 kb)
Table 1 Molecular function analysis of the differentially expressed mRNAs (DOC 71 kb)
10142_2010_198_MOESM6_ESM.doc (59 kb)
Table 2 Biological processes analysis of the differentially expressed mRNAs (DOC 59 kb)
10142_2010_198_MOESM7_ESM.doc (48 kb)
Table 3 Cellular component analysis of the differentially expressed mRNAs (DOC 48 kb)
10142_2010_198_MOESM8_ESM.doc (114 kb)
Table 4 Integrating the differentially expressed microRNA and their predicted mRNA targets (DOC 114 kb)

References

  1. Antonini D, Russo MT, De Rosa L, Gorrese M, Del VL, Missero C (2010) Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 130:1249–1257. doi: 10.1038/jid.2009.438*10.1038/jid.2009.438 PubMedCrossRefGoogle Scholar
  2. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363. doi: 0.1038/msb.2010.24*10.1038/msb.2010.24 PubMedCrossRefGoogle Scholar
  3. Babar IA, Slack FJ, Weidhaas JB (2008) miRNA modulation of the cellular stress response. Future Oncol 4:289–298. doi: 10.2217/14796694.4.2.289*10.2217/14796694.4.2.289 PubMedCrossRefGoogle Scholar
  4. Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, Cohen L, Dan H, Zion O, Strenov Y, Polak-Charcon S, Perelman M (2010) MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract 206:578–584. doi: 10.1016/j.prp.2010.03.005*10.1016/j.prp.2010.03.005 PubMedCrossRefGoogle Scholar
  5. Dave RS, Khalili K (2010) Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system. J Cell Biochem 110:834–845. doi: 10.1002/jcb.22592*10.1002/jcb.22592 PubMedCrossRefGoogle Scholar
  6. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687. doi: 10.1038/jcbfm.2008.157*10.1038/jcbfm.2008.157 PubMedCrossRefGoogle Scholar
  7. Harikai N, Sugawara T, Tomogane K, Mizuno K, Tashiro S (2004) Acute heat stress induces jumping escape behavior in mice. Physiol Behav 83:373–376. doi: 10.1016/j.physbeh.2004.06.019*10.1016/j.physbeh.2004.06.019 PubMedCrossRefGoogle Scholar
  8. Hazen SP, Wu Y, Kreps JA (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integr Genomics 3:105–111. doi: 10.1007/s10142-003-0088-4*10.1007/s10142-003-0088-4 PubMedCrossRefGoogle Scholar
  9. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199. doi: 10.1038/cdd.2009.56*10.1038/cdd.2009.56 PubMedCrossRefGoogle Scholar
  10. Iacobas DA, Fan C, Iacobas S, Haddad GG (2008) Integrated transcriptomic response to cardiac chronic hypoxia: translation regulators and response to stress in cell survival. Funct Integr Genomics 8:265–275. doi: 10.1007/s10142-008-0082-y*10.1007/s10142-008-0082-y PubMedCrossRefGoogle Scholar
  11. Kregel KC, Wall PT, Gisolfi CV (1988) Peripheral vascular responses to hyperthermia in the rat. J Appl Physiol 64:2582–2588PubMedGoogle Scholar
  12. Lei P, Li Y, Chen X, Yang S, Zhang J (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284:191–201. doi: 10.1016/j.brainres.2009.05.074*10.1016/j.brainres.2009.05.074 PubMedCrossRefGoogle Scholar
  13. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S, Sales G, Deliliers GL, Bicciato S, Lombardi L, Bortoluzzi S, Neri A (2009) Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 114:e20–e26. doi: 10.1182/blood-2009-08-237495*10.1182/blood-2009-08-237495 PubMedCrossRefGoogle Scholar
  14. Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J (2009) Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. J Anim Sci 87:1941–1949. doi: 10.2527/jas.2008-1624*10.2527/jas.2008-1624 PubMedCrossRefGoogle Scholar
  15. Nick P (2010) Stress, ROS, and actin—a volatile menage a trois? Protoplasma 239:1–2. doi: 10.1007/s00709-009-0102-3*10.1007/s00709-009-0102-3 PubMedCrossRefGoogle Scholar
  16. Pothof J, Verkaik NS, Hoeijmakers JH, van Gent DC (2009) MicroRNA responses and stress granule formation modulate the DNA damage response. Cell Cycle 8:3462–3468PubMedCrossRefGoogle Scholar
  17. Rajan VB, D’Silva P (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9:433–446. doi: 10.1007/s10142-009-0132-0*10.1007/s10142-009-0132-0 PubMedCrossRefGoogle Scholar
  18. Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207. doi: 10.1007/s10142-005-0141-6*10.1007/s10142-005-0141-6 PubMedCrossRefGoogle Scholar
  19. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, Fragapane P, Mele A (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 208:265–269. doi: 10.1016/j.bbr.2009.11.012*10.1016/j.bbr.2009.11.012 PubMedCrossRefGoogle Scholar
  20. Shen L, Su L, Turner JR (2009) Mechanisms and functional implications of intestinal barrier defects. Dig Dis 27:443–449. doi: 10.1159/000233282*10.1159/000233282 PubMedCrossRefGoogle Scholar
  21. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE 4:e6377. doi: 10.1371/journal.pone.0006377*10.1371/journal.pone.0006377 PubMedCrossRefGoogle Scholar
  22. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742. doi: 10.1152/japplphysiol.01143.2001*10.1152/japplphysiol.01143.2001 PubMedGoogle Scholar
  23. Soos V, Sebestyen E, Juhasz A, Pinter J, Light ME, Van Staden J, Balazs E (2009) Stress-related genes define essential steps in the response of maize seedlings to smoke-water. Funct Integr Genomics 9:231–242. doi: 10.1007/s10142-008-0105-8*10.1007/s10142-008-0105-8 PubMedCrossRefGoogle Scholar
  24. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809. doi: 10.1038/nri2653*10.1038/nri2653 PubMedCrossRefGoogle Scholar
  25. Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP (2010) Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones. doi: 10.1007/s12192-010-0189-7*10.1007/s12192-010-0189-7 PubMedGoogle Scholar
  26. Yu J, Yin P, Liu F, Cheng G, Guo K, Lu A, Zhu X, Luan W, Xu J (2010a) Effect of heat stress on the porcine small intestine: a morphological and gene expression study. Comp Biochem Physiol A Mol Integr Physiol 156:119–128. doi: 10.1016/j.cbpa.2010.01.008*10.1016/j.cbpa.2010.01.008 PubMedCrossRefGoogle Scholar
  27. Yu J, Yin P, Yin J, Liu F, Zhu X, Cheng G, Guo K, Yin Y, Xu J (2010b) Involvement of ERK1/2 signalling and growth-related molecules’ expression in response to heat stress-induced damage in rat jejunum and IEC-6 cells. Int J Hyperthermia 26:538–555. doi: 10.3109/02656736.2010.481276*10.3109/02656736.2010.481276 PubMedCrossRefGoogle Scholar
  28. Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360. doi: 10.1016/j.bbrc.2010.06.056*10.1016/j.bbrc.2010.06.056 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jin Yu
    • 1
  • Fenghua Liu
    • 2
  • Peng Yin
    • 1
  • Xiaoyu Zhu
    • 1
  • Guiling Cheng
    • 2
    • 3
  • Nin Wang
    • 2
  • An Lu
    • 2
  • Weili Luan
    • 2
  • Nuowei Zhang
    • 1
  • Jiefeng Li
    • 1
  • Kaijun Guo
    • 2
  • Yulong Yin
    • 4
  • Huichuan Wang
    • 2
  • Jianqin Xu
    • 1
  1. 1.College of VeterinaryChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Department of Animal Science and TechnologyBeijing University of AgricultureBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of TCVMBeijing University of AgricultureBeijingPeople’s Republic of China
  4. 4.Key Laboratory for Agro-ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, CASChangshaPeople’s Republic of China

Personalised recommendations