Functional & Integrative Genomics

, Volume 10, Issue 4, pp 463–476 | Cite as

Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence

Review

Abstract

The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.

Keywords

Germin-like proteins (GLPs) Disease resistance Cereal genomes 

Notes

Acknowledgements

The authors would like to thank the help of Professor Christ of Ringli for manuscript editing and scientific feedback.

References

  1. Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S (2001) Crystal structure of soybean proglycinin a1ab1b homotrimer. J Mol Biol 305(2):291–305PubMedGoogle Scholar
  2. Agarwal G, Rajavel M, Gopal B, Srinivasan N (2009) Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS ONE 4(5):e5736Google Scholar
  3. Aravind L, Koonin EV (1999) Dna-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27(23):4658–4670PubMedGoogle Scholar
  4. Averyanov A (2009) Oxidative burst and plant disease resistance. Front Biosci (Elite Ed) 1:142–152Google Scholar
  5. Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11(2):187–192PubMedGoogle Scholar
  6. Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394(1):178–183PubMedGoogle Scholar
  7. Bäumlein H, Braun H, Kakhovskaya IA, Shutov AD (1995) Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. J Mol Biol 41(6):1070–1075Google Scholar
  8. Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in arabidopsis. Mol Cell Proteomics 6(7):1198–1214PubMedGoogle Scholar
  9. Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554Google Scholar
  10. Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the pm3 resistance locus. Proc Natl Acad Sci USA 106(23):9519–9524PubMedGoogle Scholar
  11. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99(14):9328–9333PubMedGoogle Scholar
  12. Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant nb-lrr immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3(3):126–135PubMedGoogle Scholar
  13. Carrillo M, Goodwin P, Leach J, Leung H, Cruz CV (2009) Phylogenomic relationships of rice oxalate oxidases to the cupin superfamily and their association with disease resistance qtl. Rice 2(1):67–79Google Scholar
  14. Carter C, Thornburg RW (2000) Tobacco nectarin i. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275(47):36726–36733PubMedGoogle Scholar
  15. Carter C, Graham RA, Thornburg RW (1998) Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cdna and genomic sequences encoding 12 unique family members. Plant Mol Biol 38(6):929–943PubMedGoogle Scholar
  16. Chandler V, Alleman M (2008) Paramutation: epigenetic instructions passed across generations. Genetics 178(4):1839–1844PubMedGoogle Scholar
  17. Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100(5):2544–2549PubMedGoogle Scholar
  18. Christensen AB, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P (2004) The germinlike protein glp4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant-Microb Interact 17(1):109–117Google Scholar
  19. Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene lr1, isolated from bread wheat (triticum aestivum l.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106PubMedGoogle Scholar
  20. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7(2):111–134PubMedGoogle Scholar
  21. Davidson R, Reeves P, Manosalva P, Leach J (2009) Germins: a diverse protein family important for crop improvement. Plant Sci 3(1):43–55Google Scholar
  22. Davidson RM, Manosalva PM, Snelling J, Bruce M, Leung H, Leach JE (2010) Rice germin-like proteins: Allelic diversity and relationships to early stress responses. Rice 3:43–55Google Scholar
  23. Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 44(11):1208–1214PubMedGoogle Scholar
  24. Donaldson P, Anderson T, Lane B, Davidson A, Simmonds D (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen sclerotina sclerotiorum. Physiol Mol Plant Pathol 59(6):297–307Google Scholar
  25. Druka A, Kudrna D, Kannangara CG, von Wettstein D, Kleinhofs A (2002) Physical and genetic mapping of barley (Hordeum vulgare) germin-like cdnas. Proc Natl Acad Sci USA 99(2):850–855PubMedGoogle Scholar
  26. Dumas B, Sailland A, Cheviet JP, Freyssinet G, Pallett K (1993) Identification of barley oxalate oxidase as a germin-like protein. C R Acad Sci, 3 Sci Vie 316(8):793–798Google Scholar
  27. Dunwell J, Gane P (1998) Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. J Mol Biol 46(2):147–154Google Scholar
  28. Dunwell J, Gibbings J, Mahmood T, Naqvi SS (2008) Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 27:342–375Google Scholar
  29. Dunwell JM (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15:1–32PubMedGoogle Scholar
  30. Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64(1):153–179PubMedGoogle Scholar
  31. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1):7–17PubMedGoogle Scholar
  32. Eulgem T (2005) Regulation of the arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–8PubMedGoogle Scholar
  33. Federico ML, Iñiguez-Luy FL, Skadsen RW, Kaeppler HF (2006) Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics 174(1):179–190PubMedGoogle Scholar
  34. Felle HH, Herrmann A, Hückelhoven R, Kogel K-H (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (hordeum vulgare). Protoplasma 227(1):17–24PubMedGoogle Scholar
  35. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258PubMedGoogle Scholar
  36. Ficke A, Gadoury DM, Seem RC (2002) Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathology 92(6):671–675PubMedGoogle Scholar
  37. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288Google Scholar
  38. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-start gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedGoogle Scholar
  39. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001PubMedGoogle Scholar
  40. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/xyls family of transcriptional regulators. Microbiol Mol Biol Rev 61(4):393–410PubMedGoogle Scholar
  41. Gane PJ, Dunwell JM, Warwicker J (1998) Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J Mol Biol 46(4):488–493Google Scholar
  42. Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International genome research on wheat consortium. Genetics 168(2):1087–1096PubMedGoogle Scholar
  43. Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine germin-like protein (vvglp3) gene is closely linked to the site of erysiphe necator infection: a possible role in defense? Mol Plant-Microb Interact 20(9):1112–1125Google Scholar
  44. Heintzen C, Fischer R, Melzer S, Kappeler K, Apel K, Staiger D (1994) Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant sinapis alba l. Plant Physiol 106(3):905–915PubMedGoogle Scholar
  45. Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like ger4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952PubMedGoogle Scholar
  46. Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400PubMedGoogle Scholar
  47. Hu K-M, Qiu D-Y, Shen X-L, Li X-H, Wang S-P (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1(5):786–793PubMedGoogle Scholar
  48. Huang L, Brooks SA, Li, W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene lr21 from the large and polyploid genome of bread wheat. Genetics 164(2):655–664PubMedGoogle Scholar
  49. Hurkman W, Tao H, Tanaka C (1991) Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol 97(1):366–374PubMedGoogle Scholar
  50. Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (hordeum vulgare l.) roots. Plant Physiol 104(2):803–804PubMedGoogle Scholar
  51. Initiative TIB, investigators P, Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, sequencing D, assembly Barry K, Lucas S, Harmon-Smith M, Lail K, Tice H, Leader JS, Grimwood J, McKenzie N, Bevan MW, assembly P, end sequencing B, Huo N, Gu YQ, Lazo GR, Anderson OD, Leader JPV, You FM, Luo M-C, Dvorak J, Wright J, Febrer M, Bevan MW, Idziak D, Hasterok R, Garvin DF, sequencing T, analysis Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Leader TCM, Wu H, Wu W, Hsia A-P, Schnable PS, Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Vogel JP, Garvin DF, Weng Y, McKenzie N, Bevan MW, analysis G, annotation Haberer G, Spannagl M, Leader KM, Rattei T, Mitros T, Rokhsar D, Lee S-J, Rose JKC, Mueller LA, York TL, analysis R, Leader TW, Buchmann JP, Tanskanen J, Leader AHS, Gundlach H, Wright J, Bevan M, de Oliveira AC, da C Maia L, Belknap W, Gu YQ, Jiang N, Lai J, Zhu L, Ma J, Sun C, Pritham E, Genomics C, Leader JS, Murat F, Abrouk M, Haberer G, Spannagl M, Mayer K, Bruggmann R, Messing J, You FM, Luo M-C, Dvorak J, analysis SR, Fahlgren N, Fox SE, Sullivan CM, Mockler TC, Carrington JC, Chapman EJ, May GD, Zhai J, Ganssmann M, Gurazada SGR, German M, Meyers BC, Leader PJG, annotation M, gene family analysis, Bragg JN, Tyler L, Wu J, Gu YQ, Lazo GR, Laudencia-Chingcuanco D, Thomson J, Leader JPV, Hazen SP, Chen S, Scheller HV, Harholt J, Ulvskov P, Fox SE, Filichkin SA, Fahlgren N, Kimbrel JA, Chang JH, Sullivan CM, Chapman EJ, Carrington JC, Mockler TC, Bartley LE, Cao P, Jung K-H, Sharma MK, Vega-Sanchez M, Ronald P, Dardick CD, Bodt SD, Verelst W, Inzé D, Heese M, Schnittger A, Yang X, Kalluri UC, Tuskan GA, Hua Z, Vierstra RD, Garvin DF, Cui Y, Ouyang S, Sun Q, Liu Z, Yilmaz A, Grotewold E, Sibout R, Hematy K, Mouille G, Höfte H, Michael T, Pelloux J, O’Connor D, Schnable J, Rowe S, Harmon F, Cass CL, Sedbrook JC, Byrne ME, Walsh S, Higgins J, Bevan M, Li P, Brutnell T, Unver T, Budak H, Belcram H, Charles M, Chalhoub B, Baxter I (2010) Genome sequencing and analysis of the model grass brachypodium distachyon. Nature 463(7282):763–768Google Scholar
  52. Jones JDG, Dangl JL (2006). The plant immune system. Nature 444(7117):323–329PubMedGoogle Scholar
  53. Kafri R, Levy M, Pilpel Y (2006) The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci USA 103(31):11653–11658PubMedGoogle Scholar
  54. Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379(1):133–138PubMedGoogle Scholar
  55. Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18(4):593–605PubMedGoogle Scholar
  56. Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2007) Laser capture microdissection (lcm) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226(6):1389–1409PubMedGoogle Scholar
  57. Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of bvglp-1 encoding a germin-like protein from sugar beet in arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant-Microb Interact 23(4):446–457Google Scholar
  58. Kondo K, Yamada K, Nakagawa A, Takahashi M, Morikawa H, Sakamoto A (2008) Molecular characterization of atmospheric no2-responsive germin-like proteins in azalea leaves. Biochem Biophys Res Commun 377(3):857–861PubMedGoogle Scholar
  59. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13(2):181–185PubMedGoogle Scholar
  60. Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The rcsb pdb information portal for structural genomics. Nucleic Acids Res 34(Database issue):D302–D305Google Scholar
  61. Krattinger S, Lagudah E, Spielmeyer W, Singh R, Huerta-Espino J, McFadden H, Bossolini E, Selter L, Keller B (2009) A putative abc transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363PubMedGoogle Scholar
  62. Kukavica B, Vucinić Z, Vuletić M (2005) Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226(3–4):191–197PubMedGoogle Scholar
  63. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102(25):9068–9073PubMedGoogle Scholar
  64. Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8(3):294–301PubMedGoogle Scholar
  65. Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53(2):67–75PubMedGoogle Scholar
  66. Lane BG, Bernier F, Dratewka-Kos E, Shafai R, Kennedy TD, Pyne C, Munro JR, Vaughan T, Walters D, Altomare F (1991) Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain physarum spherulins. J Biol Chem 266(16):10461–10469PubMedGoogle Scholar
  67. Lane BG, Cuming AC, Frégeau J, Carpita NC, Hurkman WJ, Bernier F, Dratewka-Kos E, Kennedy TD (1992) Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur J Biochem 209(3):961–969PubMedGoogle Scholar
  68. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268(17):12239–12242PubMedGoogle Scholar
  69. Li Q, Li L, Dai J, Li J, Yan J (2009) Identification and characterization of cacta transposable elements capturing gene fragments in maize. Chin Sci Bull 42:251–269Google Scholar
  70. Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45(6):619–629PubMedGoogle Scholar
  71. Liu G, Jia Y, Correa-Victoria FJ, Prado GA, Yeater KM, McClung A, Correll JC (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99(9):1078–1084PubMedGoogle Scholar
  72. Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in nicotiana attenuata improves performance of native herbivores. Plant Physiol 140(3):1126–1136PubMedGoogle Scholar
  73. Mahmood T, Nazar N, Abbasi B (2010) Comparative analysis of regulatory elements in different germin-like protein gene promoters. Afr J Biotechnol 9(13):1871–1881Google Scholar
  74. Manosalva P, Davidson R, Liu B, Zhu X, Hulbert S, Leung H, Leach J (2008) A germin-like protein gene family functions as a complex qtl conferring broad-spectrum disease resistance in rice. Plant Physiol 149(1):286–296PubMedGoogle Scholar
  75. Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61(4–5):615–627PubMedGoogle Scholar
  76. McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32(7):736–744PubMedGoogle Scholar
  77. Membré N, Bernier F, Staiger D, Berna A (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211(3):345–354PubMedGoogle Scholar
  78. Membré N, Berna A, Neutelings G, David A, David H, Staiger D, Vásquez JS, Raynal M, Delseny M, Bernier F (1997) CDNA sequence, genomic organization and differential expression of three arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol 35(4):459–469PubMedGoogle Scholar
  79. Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30(Pt 6):925–929PubMedGoogle Scholar
  80. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, BerlinGoogle Scholar
  81. Ouyang S, Buell CR (2004) The tigr plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(Database issue):D360–D363Google Scholar
  82. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The tigr rice genome annotation resource: improvements and new features. Nucleic Acids Res 35(Database issue):D883–D887Google Scholar
  83. Padmanabhan M, Cournoyer P, Dinesh-Kumar SP (2009) The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cell Microbiol 11(2):191–198PubMedGoogle Scholar
  84. Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H (2003) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37(2):186–198Google Scholar
  85. Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming qtls and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:313–324Google Scholar
  86. Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant-Microb Interact 16(1):14–24Google Scholar
  87. Ramputh A, Arnason J, Cass L, Simmonds J (2002) Reduced herbivory of the european corn borer (ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Sci 162(3):431–440Google Scholar
  88. Requena L, Bornemann S (1999) Barley (hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. Biochem J 343 Pt 1:185–190PubMedGoogle Scholar
  89. Rodríguez-López M, Baroja-Fernández E, Zandueta-Criado A, Moreno-Bruna B, Muñoz FJ, Akazawa T, Pozueta-Romero J (2001) Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (hordeum vulgare l.) are distinct oligomers of hvglp1, a germin-like protein. FEBS lett 490(1–2):44–48PubMedGoogle Scholar
  90. Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the b genome of hexaploid wheat: evolutionary relationships at the spa genomic region with the s genome of the diploid relative aegilops speltoides. BMC Genomics 9(1):555PubMedGoogle Scholar
  91. Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily A, Courtney L, Kruchowski S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S, Belter E, Du F, Kim K, Abbott R, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M, McMahan L, Buren PV, Vaughn M, Ying K, Yeh C-T, Emrich S, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk W, Baucom R, Brutnell T, Carpita N, Chaparro C, Chia J-M, Deragon J-M, Estill J, Fu Y, Jeddeloh J, Han Y, Lee H, Li P, Lisch D, Liu S, Liu Z, Nagel D, McCann M, SanMiguel P, Myers A, Nettleton D, Nguyen J, Penning B, Ponnala L, Schneider K, Schwartz D, Sharma A, Soderlund C, Springer N, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen J, Dawe R, Jiang J, Jiang N, Presting G, Wessler S, Aluru S, Martienssen R, Clifton S, McCombie W, Wing R, Wilson R (2009) The b73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115PubMedGoogle Scholar
  92. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium–at the threshold of efficient access to the barley genome. Plant Physiol 149(1):142–147PubMedGoogle Scholar
  93. Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20(5):541–552PubMedGoogle Scholar
  94. Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, Toojinda T (2002) Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (oryza sativa). DNA Res 9(3):79–88PubMedGoogle Scholar
  95. Soares NC, Francisco R, Vielba JM, Ricardo CP, Jackson PA (2009) Associating wound-related changes in the apoplast proteome of medicago with early steps in the ros signal-transduction pathway. J Proteome Res 8(5):2298–309PubMedGoogle Scholar
  96. Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C (1997a) The 1.6 a crystal structure of the arac sugar-binding and dimerization domain complexed with d-fucose. J Mol Biol 273(1):226–237PubMedGoogle Scholar
  97. Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C (1997b) Structural basis for ligand-regulated oligomerization of arac. Science 276(5311):421–425PubMedGoogle Scholar
  98. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, xa21. Science 270(5243):1804–1806PubMedGoogle Scholar
  99. Tabien E, Li Z, Paterson H, Marchetti A, Stansel W, Pinson M (2002) Mapping qtls for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105(2–3):313–324.PubMedGoogle Scholar
  100. Tanner A, Bornemann S (2000) Bacillus subtilis yvrk is an acid-induced oxalate decarboxylase. J Bacteriol 182(18):5271–5273PubMedGoogle Scholar
  101. Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36(1):101–112PubMedGoogle Scholar
  102. Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169(4):2277–2293PubMedGoogle Scholar
  103. Wisser RJ, Balint-Kurti PJ, Nelson, RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96(2):120–129PubMedGoogle Scholar
  104. Wojtaszek P (1997a) Mechanisms for the generation of reactive oxygen species in plant defence response. Acta Physiol Plant 19:581–589Google Scholar
  105. Wojtaszek P (1997b) Oxidative burst: an early plant response to pathogen infection. Biochem J 322(Pt 3):681–692PubMedGoogle Scholar
  106. Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 7(11):1036–1040PubMedGoogle Scholar
  107. Wu J-L, Sinha PK, Variar M, Zheng K-L, Leach JE, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108(6):1024–1032PubMedGoogle Scholar
  108. Xiang P, Beardslee TA, Zeece MG, Markwell J, Sarath G (2002) Identification and analysis of a conserved immunoglobulin e-binding epitope in soybean g1a and g2a and peanut ara h 3 glycinins. Arch Biochem Biophys 408(1):51–57PubMedGoogle Scholar
  109. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene pm3b from hexaploid wheat. Plant J 37(4):528–538PubMedGoogle Scholar
  110. Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, barbula unguiculata. J Biol Chem 274(47):33274–33278PubMedGoogle Scholar
  111. Yi H, Richards EJ (2007) A cluster of disease resistance genes in arabidopsis is coordinately regulated by transcriptional activation and rna silencing. Plant Cell 19(9):2929–2939PubMedGoogle Scholar
  112. Zimmermann G, Bäumlein H, Mock H-P, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142(1):181–192PubMedGoogle Scholar
  113. Zou J, Pan X, Chen Z, Xu J, Lu J, Zhai W, Zhu L (2000) Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (oryza sativa l.). Theor Appl Genet 101:569–573Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Plant BiologyUniversity of ZurichZurichSwitzerland
  2. 2.Centre for Comparative GenomicsMurdoch UniversityMurdochAustralia

Personalised recommendations