Functional & Integrative Genomics

, Volume 10, Issue 1, pp 111–122 | Cite as

Conserved globulin gene across eight grass genomes identify fundamental units of the loci encoding seed storage proteins

  • Yong Qiang Gu
  • Humphrey Wanjugi
  • Devin Coleman-Derr
  • Xiuying Kong
  • Olin D. Anderson
Original Paper

Abstract

The wheat high molecular weight (HMW) glutenins are important seed storage proteins that determine bread-making quality in hexaploid wheat (Triticum aestivum). In this study, detailed comparative sequence analyses of large orthologous HMW glutenin genomic regions from eight grass species, representing a wide evolutionary history of grass genomes, reveal a number of lineage-specific sequence changes. These lineage-specific changes, which resulted in duplications, insertions, and deletions of genes, are the major forces disrupting gene colinearity among grass genomes. Our results indicate that the presence of the HMW glutenin gene in Triticeae genomes was caused by lineage-specific duplication of a globulin gene. This tandem duplication event is shared by Brachypodium and Triticeae genomes, but is absent in rice, maize, and sorghum, suggesting the duplication occurred after Brachypodium and Triticeae genomes diverged from the other grasses ~35 Ma ago. Aside from their physical location in tandem, the sequence similarity, expression pattern, and conserved cis-acting elements responsible for endosperm-specific expression further support the paralogous relationship between the HMW glutenin and globulin genes. While the duplicated copy in Brachypodium has apparently become nonfunctional, the duplicated copy in wheat has evolved to become the HMW glutenin gene by gaining a central prolamin repetitive domain.

Keywords

Wheat High molecular weight glutenin Globulin Duplication Genome evolution Domestication 

Notes

Acknowledgment

The authors thank Jorge Dubcovsky for providing T. monococcum BAC clones, Sekou Health for assistance in the BAC sequencing, and Gerard R. Lazo for bioinformatics support. This work was supported in part by NSF Grant DBI-0638558 and by the United State Department of Agriculture, Agriculture Research Service CRIS 532502100-000 and 532502100-000.

Supplementary material

10142_2009_135_MOESM1_ESM.xls (26 kb)
Supplementary Table 1BLAST search of annotated genes at the orthologous Glu-1 region against the EST databases (XLS 25 kb)

References

  1. Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome 42:296–307CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhnag Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Anderson O (2009) EST mining for gene structure and expression analysis of genes in the region of the wheat high-molecular-weight glutenin loci. Genome 52(8):726–740CrossRefPubMedGoogle Scholar
  4. Anderson OD, Greene FC (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor App Genet 77:689–700CrossRefGoogle Scholar
  5. Anderson O, Rausch C, Moullet O, Lagudah E (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3:56–68PubMedGoogle Scholar
  6. Békés F, Kemény S, Morell M (2006) An integrated approach to predicting end-product quality of wheat. Eur J Agronomy 25:155–162CrossRefGoogle Scholar
  7. Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45:172–183CrossRefGoogle Scholar
  8. Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717CrossRefPubMedGoogle Scholar
  9. Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci U S A 105:9691–9696CrossRefPubMedGoogle Scholar
  10. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M-F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045CrossRefPubMedGoogle Scholar
  11. De Bustos A, Jouve N (2003) Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor App Genet 107:74–83Google Scholar
  12. Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A 102:19243–19248CrossRefPubMedGoogle Scholar
  13. D’Ovidio R, Anderson OD (1994) PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet 88:759–763CrossRefGoogle Scholar
  14. Gu YQ, Anderson OD, Londeorë CF, Kong X, Chibbar RN, Lazo GR (2003) Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46:1084–1097CrossRefPubMedGoogle Scholar
  15. Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470CrossRefPubMedGoogle Scholar
  16. Gu YQ, Salse J, Coleman-Derr D, Dupin A, Crossman C, Lazo GR, Huo N, Belcram H, Ravel C, Charmet G, Charles M, Anderson OD, Chalhoub B (2006) Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504CrossRefPubMedGoogle Scholar
  17. Hammond-Kosack MC, Holdsworth MJ, Bevan MW (1993) In vivo footprinting of a low molecular weight glutenin gene (LMWG-1D1) in wheat endosperm. Embo J 12:545–554PubMedGoogle Scholar
  18. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 99:8133–8138CrossRefPubMedGoogle Scholar
  19. Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ (2009) Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 70:47–61CrossRefPubMedGoogle Scholar
  20. IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  21. Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–536CrossRefPubMedGoogle Scholar
  22. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205CrossRefPubMedGoogle Scholar
  23. Kong X-Y, Gu Y, You F, Dubcovsky J, Anderson O (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69CrossRefPubMedGoogle Scholar
  24. Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park YJ, Jeong OY, Bennetzen JL, Messing J (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931CrossRefPubMedGoogle Scholar
  25. Li W, Huang L, Gill BS (2008) Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat1,[W],[OA]. Plant Physiol 146:200–212CrossRefPubMedGoogle Scholar
  26. Lijavetzky DMG, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182CrossRefPubMedGoogle Scholar
  27. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  28. Macritchie F, Cros DL, Wrigley CW (1990) Flour polypeptides related to wheat quality. Adv Cereal Sci Technol 10:79–145Google Scholar
  29. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996CrossRefPubMedGoogle Scholar
  30. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Cur Opin Plant Biol 8:122–128CrossRefGoogle Scholar
  31. Muller M, Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4:343–355CrossRefPubMedGoogle Scholar
  32. Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996) Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226CrossRefPubMedGoogle Scholar
  33. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  34. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474CrossRefPubMedGoogle Scholar
  35. Ragupathy R, Cloutier S (2008) Genome organisation and retrotransposon driven molecular evolution of the endosperm Hardness (Ha) locus in Triticum aestivum cv Glenlea. Mol Genet Genomics 280:467–481CrossRefPubMedGoogle Scholar
  36. Rooke L, Békés F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115–120CrossRefGoogle Scholar
  37. Rupert PB, Daughdrill GW, Bowerman B, Matthews BW (1998) A new DNA-binding motif in the Skn-1 binding domain-DNA complex. Nat Struct Biol 5:484–491CrossRefPubMedGoogle Scholar
  38. SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80CrossRefPubMedGoogle Scholar
  39. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958CrossRefPubMedGoogle Scholar
  40. Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12PubMedGoogle Scholar
  41. Shewry PR, Halford NG, Tatham AS (1992) High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105–120CrossRefGoogle Scholar
  42. Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 35–78Google Scholar
  43. Sonnhammer ELL, Durbin R (1995) A dot-matrix program with dynamic threshhold suited for genomic DNA and protein-sequence analysis. Gene-Combis 167:1–10Google Scholar
  44. Vasil IK, Anderson OD (1997) Genetic engineering of wheat gluten. Trends Plant Sci 2:292–297CrossRefGoogle Scholar
  45. Vogel JP, Tuna M, Budak H, Huo N, Gu YQ, Steinwand M (2009) Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biol 9:88CrossRefPubMedGoogle Scholar
  46. Wang GL, Ruan DL, Song WY, Sideris S, Chen L, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–779CrossRefPubMedGoogle Scholar
  47. Wanjugi H, Coleman-Derr D, Huo N, Kianian SF, Luo MC, Wu J, Anderson OD, Gu YQ (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52:576–587CrossRefPubMedGoogle Scholar
  48. Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z-D, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197. doi:10.1105/tpc.011023 CrossRefPubMedGoogle Scholar
  49. Wicker T, Yahiaoui N, Keller B (2007) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 51:631–641CrossRefPubMedGoogle Scholar
  50. Xu J-H, Messing J (2008) Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci U S A 105:14330–14335CrossRefPubMedGoogle Scholar
  51. Zhang L, Li W-H (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 21:236–239CrossRefPubMedGoogle Scholar
  52. Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A, Malatrasi M, Turuspekov Y, Walia H, Akhunov ED, Kianian P, Otto C, Simons K, Deal KR, Echenique V, Stamova B, Ross K, Butler GE, Strader L, Verhey SD, Johnson R, Altenbach S, Kothari K, Tanaka C, Shah MM, Laudencia-Chingcuanco D, Han P, Miller RE, Crossman CC, Chao S, Lazo GR, Klueva N, Gustafson JP, Kianian SF, Dubcovsky J, Walker-Simmons MK, Gill KS, Dvorak J, Anderson OD, Sorrells ME, McGuire PE, Qualset CO, Nguyen HT, Close TJ (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168:595–608CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yong Qiang Gu
    • 1
  • Humphrey Wanjugi
    • 1
  • Devin Coleman-Derr
    • 1
  • Xiuying Kong
    • 2
  • Olin D. Anderson
    • 1
  1. 1.Western Regional Research CenterUnited States Department of Agricultural-Agricultural Research ServiceAlbanyUSA
  2. 2.National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Resources and Utilization, MOA, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations