Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors

  • Vinoth Babu V. Rajan
  • Patrick D’SilvaEmail author


Plants are sessile organisms that have evolved a variety of mechanisms to maintain their cellular homeostasis under stressful environmental conditions. Survival of plants under abiotic stress conditions requires specialized group of heat shock protein machinery, belonging to Hsp70:J-protein family. These heat shock proteins are most ubiquitous types of chaperone machineries involved in diverse cellular processes including protein folding, translocation across cell membranes, and protein degradation. They play a crucial role in maintaining the protein homeostasis by reestablishing functional native conformations under environmental stress conditions, thus providing protection to the cell. J-proteins are co-chaperones of Hsp70 machine, which play a critical role by stimulating Hsp70s ATPase activity, thereby stabilizing its interaction with client proteins. Using genome-wide analysis of Arabidopsis thaliana, here we have outlined identification and systematic classification of J-protein co-chaperones which are key regulators of Hsp70s function. In comparison with Saccharomyces cerevisiae model system, a comprehensive domain structural organization, cellular localization, and functional diversity of A. thaliana J-proteins have also been summarized.


Arabidopsis thaliana Heat shock protein Hsp70 J-protein ATPase activity 



Heat shock proteins


70 kDa heat shock protein


40 kDa heat shock protein


J-protein, Hsp40

HPD motif

Histidine, proline, aspartate motif


J-like proteins

G/F region

Glycine/phenylalanine region


Calmodulin-binding protein


J-protein required for chloroplast accumulation response


Auxilin-like 1 protein


Mitochondrial Hsp70


Presequence translocase-associated protein import motor 18


Presequence translocase-associated protein import motor 16


Gametophytic FActor 2


Altered response to gravity 1


Altered response to gravity-like gene 1


Altered response to gravity-like gene 2


Katamari 2


Gravitropism defective 2


Receptor-mediated endocytosis-8


Protein storage vacuoles



PDS acknowledges support from Indian Institute of Science, Bangalore and The Wellcome Trust International Senior Research Fellowship (WT081643MA).

Supplementary material

10142_2009_132_MOESM1_ESM.pdf (33 kb)
Supplementary Material Table S1 Data collection of type III and type IV A. thaliana J-proteins (PDF 32 kb).
10142_2009_132_MOESM2_ESM.pdf (93 kb)
Supplementary Material Fig. S1 Structural classification of A. thaliana type III and type IV J-proteins. In total, 92 type III J-proteins and four type IV J-like proteins have been identified in A. thaliana genome. The highly diverged A. thaliana type III J-proteins contain additional zinc-finger domains along with J-domain such as C2H2, A2L, DPH, PhnA, PHD, ZF-HYPF, PRIM ZN, and ZN-CCHC, which are also included in the classification, designated by ZN2, ZN3, ZN4, ZN5, ZN6, ZN7, ZN8, and ZN9, respectively. They have been identified by using Pfam database. The C2H2 domain consists of the consensus sequence (F/Y)-X-C-X2-5-C-X3-(F/Y)-X5-Ψ-X2-H-X3–4-H which is identified as a DNA-binding domain. The A2L zinc-finger domain has the consensus sequence CX2CX13CX2C, which specifically binds to zinc. Its function is unknown. The DPH (CSL) zinc-finger domain contains two CX(n)C motifs (in most cases n = 2) as a consensus sequence which is involved in diphthamide biosynthesis. PHD fingers comprise C4HC3 signature which tend to be found in nuclear proteins that have a role in regulating chromatin. Zinc knuckle-CCHC has a consensus sequence CX2CX4HX4C which is involved in RNA binding. Transmembrane (TM), coiled coil (Cc), and tetratricopeptide (TPR) region were analyzed using different databases which are mentioned in Fig. 3. The domain region and total protein amino acid residue are also mentioned for each protein sequence. Type IV J-proteins contain 1 JLP2 and 3 JLP3/Magmas sequence where each sequence is represented by 3A, 3B, and 3C (PDF 93 kb).


  1. Aron R, Higurashi T, Sahi C, Craig EA (2007) J-protein co-chaperone Sis1 required for generation of [RNQ+] seeds necessary for prion propagation. EMBO J 26:3794–3803. doi: 7601811[pii]10.1038/sj.emboj.7601811 PubMedCrossRefGoogle Scholar
  2. Banecki B, Liberek K, Wall D, Wawrzynow A, Georgopoulos C, Bertoli E, Tanfani F, Zylicz M (1996) Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone. J Biol Chem 271:14840–14848PubMedCrossRefGoogle Scholar
  3. Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH (2003) ARG1 is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625. doi: 10.1105/tpc.015560tpc.015560[pii] PubMedCrossRefGoogle Scholar
  4. Braun EL, Grotewold E (2001) Fungal Zuotin proteins evolved from MIDA1-like factors by lineage-specific loss of MYB domains. Mol Biol Evol 18:1401–1412PubMedGoogle Scholar
  5. Brodsky JL, Schekman R (1993) A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 123:1355–1363PubMedCrossRefGoogle Scholar
  6. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366. doi: S0092-8674(00)80928-9[pii] PubMedCrossRefGoogle Scholar
  7. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi: S0092-8674(06)00495-8[pii]10.1016/j.cell.2006.04.014 PubMedCrossRefGoogle Scholar
  8. Carla Fama M, Raden D, Zacchi N, Lemos DR, Robinson AS, Silberstein S (2007) The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. Biochim Biophys Acta 1773:232–242. doi: S0167-4889(06)00325-9[pii]10.1016/j.bbamcr.2006.10.011 PubMedCrossRefGoogle Scholar
  9. Chang HC, Hull M, Mellman I (2004) The J-domain protein Rme-8 interacts with Hsc70 to control clathrin-dependent endocytosis in Drosophila. J Cell Biol 164:1055–1064. doi: 10.1083/jcb.200311084jcb.200311084[pii] PubMedCrossRefGoogle Scholar
  10. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36PubMedCrossRefGoogle Scholar
  11. Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232PubMedCrossRefGoogle Scholar
  12. Craig EA, Marszalek J (2002) A specialized mitochondrial molecular chaperone system: a role in formation of Fe/S centers. Cell Mol Life Sci 59:1658–1665PubMedCrossRefGoogle Scholar
  13. Craig EA, Eisenman HC, Hundley HA (2003) Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr Opin Microbiol 6:157–162. doi: S1369527403000304[pii] PubMedCrossRefGoogle Scholar
  14. Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21PubMedCrossRefGoogle Scholar
  15. D’Silva PD, Schilke B, Walter W, Andrew A, Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci U S A 100:13839–13844. doi: 10.1073/pnas.19361501001936150100[pii] PubMedCrossRefGoogle Scholar
  16. D’Silva PR, Schilke B, Walter W, Craig EA (2005) Role of Pam16′s degenerate J domain in protein import across the mitochondrial inner membrane. Proc Natl Acad Sci U S A 102:12419–12424. doi: 0505969102[pii]10.1073/pnas.0505969102 PubMedCrossRefGoogle Scholar
  17. Eisenman HC, Craig EA (2004) Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol Microbiol 53:335–344. doi: 10.1111/j.1365-2958.2004.04134.xMMI4134[pii] PubMedCrossRefGoogle Scholar
  18. Englbrecht CC, Schoof H, Bohm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39. doi: 10.1186/1471-2164-5-391471-2164-5-39[pii] PubMedCrossRefGoogle Scholar
  19. Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316PubMedCrossRefGoogle Scholar
  20. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596. doi: 10.1038/nature02899nature02899[pii] PubMedCrossRefGoogle Scholar
  21. Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE, Bilanchone V, Cumsky MG, Truscott KN, Pfanner N, Rehling P (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226–233. doi: 10.1038/nsmb735nsmb735[pii] PubMedCrossRefGoogle Scholar
  22. Fukaki H, Fujisawa H, Tasaka M (1997) The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana. Plant Cell Physiol 38:804–810PubMedGoogle Scholar
  23. Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634. doi: 10.1146/annurev.cb.09.110193.003125 PubMedCrossRefGoogle Scholar
  24. Girard M, Poupon V, Blondeau F, McPherson PS (2005) The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 280:40135–40143. doi: M505036200[pii]10.1074/jbc.M505036200 PubMedCrossRefGoogle Scholar
  25. Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133:100–112PubMedCrossRefGoogle Scholar
  26. Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435PubMedCrossRefGoogle Scholar
  27. Hettema EH, Ruigrok CC, Koerkamp MG, van den Berg M, Tabak HF, Distel B, Braakman I (1998) The cytosolic DnaJ-like protein djp1p is involved specifically in peroxisomal protein import. J Cell Biol 142:421–434PubMedCrossRefGoogle Scholar
  28. Hundley HA, Walter W, Bairstow S, Craig EA (2005) Human Mpp 11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308:1032–1034. doi: 1109247[pii]10.1126/science.1109247 PubMedCrossRefGoogle Scholar
  29. Lemmon SK (2001) Clathrin uncoating: auxilin comes to life. Curr Biol 11:R49–R52. doi: S0960-9822(01)00010-0[pii] PubMedCrossRefGoogle Scholar
  30. Li J, Qian X, Sha B (2003) The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11:1475–1483. doi: S0969212603002557[pii] PubMedCrossRefGoogle Scholar
  31. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  32. Liu S, Milne GT, Kuremsky JG, Fink GR, Leppla SH (2004) Identification of the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-ribosylating toxins on translation elongation factor 2. Mol Cell Biol 24:9487–9497. doi: 24/21/9487[pii]10.1128/MCB.24.21.9487-9497.2004 PubMedCrossRefGoogle Scholar
  33. Lu Z, Cyr DM (1998) The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273:5970–5978PubMedCrossRefGoogle Scholar
  34. Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ (2000) Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J Mol Biol 300:805–818. doi: 10.1006/jmbi.2000.3923S0022-2836(00)93923-8[pii] PubMedCrossRefGoogle Scholar
  35. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. doi: 10.1007/s00018-004-4464-6 PubMedCrossRefGoogle Scholar
  36. Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA (2007) The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 104:1558–1563. doi: 0610704104[pii]10.1073/pnas.0610704104 PubMedCrossRefGoogle Scholar
  37. Miernyk JA (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones 6:209–218PubMedCrossRefGoogle Scholar
  38. Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nat Rev, Mol Cell Biol 3:555–565. doi: 10.1038/nrm878nrm878[pii] CrossRefGoogle Scholar
  39. Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98–112PubMedCrossRefGoogle Scholar
  40. Orme W, Walker AR, Gupta R, Gray JC (2001) A novel plastid-targeted J-domain protein in Arabidopsis thaliana. Plant Mol Biol 46:615–626PubMedCrossRefGoogle Scholar
  41. Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250. doi: S0022-2836(96)90395-2[pii]10.1006/jmbi.1996.0395 PubMedCrossRefGoogle Scholar
  42. Peng J, Huang CH, Short MK, Jubinsky PT (2005) Magmas gene structure and evolution. In Silico Biol 5:251–263. doi: 2004050024[pii] PubMedCrossRefGoogle Scholar
  43. Pishvaee B, Costaguta G, Yeung BG, Ryazantsev S, Greener T, Greene LE, Eisenberg E, McCaffery JM, Payne GS (2000) A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2:958–963. doi: 10.1038/35046619 PubMedCrossRefGoogle Scholar
  44. Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235. doi: S0022-2836(96)90394-0[pii]10.1006/jmbi.1996.0394 PubMedCrossRefGoogle Scholar
  45. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570. doi: 10.1007/s00018-006-6192-6 PubMedCrossRefGoogle Scholar
  46. Quesada V, Ponce MR, Micol JL (1999) OTC and AUL1, two convergent and overlapping genes in the nuclear genome of Arabidopsis thaliana. FEBS Lett 461:101–106. doi: S0014-5793(99)01426-X[pii] PubMedCrossRefGoogle Scholar
  47. Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E, Barrell B, Neupert W (1994) Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:249–259. doi: 0092-8674(94)90317-4[pii] PubMedCrossRefGoogle Scholar
  48. Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hegde RS (2007) The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell 18:3681–3691. doi: E07-03-0272[pii]10.1091/mbc.E07-03-0272 PubMedCrossRefGoogle Scholar
  49. Sahi C, Craig EA (2007) Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U S A 104:7163–7168. doi: 0702357104[pii]10.1073/pnas.0702357104 PubMedCrossRefGoogle Scholar
  50. Sedbrook JC, Chen R, Masson PH (1999) ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci U S A 96:1140–1145PubMedCrossRefGoogle Scholar
  51. Sha B, Lee S, Cyr DM (2000) The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8:799–807PubMedCrossRefGoogle Scholar
  52. Shi YY, Hong XG, Wang CC (2005) The C-terminal (331–376) sequence of Escherichia coli DnaJ is essential for dimerization and chaperone activity: a small angle X-ray scattering study in solution. J Biol Chem 280:22761–22768. doi: M503643200[pii]10.1074/jbc.M503643200 PubMedCrossRefGoogle Scholar
  53. Shoji W, Inoue T, Yamamoto T, Obinata M (1995) MIDA1, a protein associated with Id, regulates cell growth. J Biol Chem 270:24818–24825PubMedCrossRefGoogle Scholar
  54. Silady RA, Kato T, Lukowitz W, Sieber P, Tasaka M, Somerville CR (2004) The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans. Plant Physiol 136:3095–3103. doi: pp.104.050583[pii]10.1104/pp.104.050583 discussion 3002PubMedCrossRefGoogle Scholar
  55. Silver PA, Way JC (1993) Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell 74:5–6. doi: 0092-8674(93)90287-Z[pii] PubMedCrossRefGoogle Scholar
  56. Suetsugu N, Kagawa T, Wada M (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162. doi: pp.105.067371[pii]10.1104/pp.105.067371 PubMedCrossRefGoogle Scholar
  57. Sun G, Gargus JJ, Ta DT, Vickery LE (2003) Identification of a novel candidate gene in the iron-sulfur pathway implicated in ataxia-susceptibility: human gene encoding HscB, a J-type co-chaperone. J Hum Genet 48:415–419. doi: 10.1007/s10038-003-0048-9 PubMedCrossRefGoogle Scholar
  58. Szabo A, Korszun R, Hartl FU, Flanagan J (1996) A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J 15:408–417PubMedGoogle Scholar
  59. Szyperski T, Pellecchia M, Wall D, Georgopoulos C, Wuthrich K (1994) NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2–108) containing the highly conserved J domain. Proc Natl Acad Sci U S A 91:11343–11347PubMedCrossRefGoogle Scholar
  60. Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I (2007) Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell 19:320–332. doi: tpc.106.046631[pii]10.1105/tpc.106.046631 PubMedCrossRefGoogle Scholar
  61. Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354PubMedCrossRefGoogle Scholar
  62. Voisine C, Cheng YC, Ohlson M, Schilke B, Hoff K, Beinert H, Marszalek J, Craig EA (2001) Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:1483–1488. doi: 10.1073/pnas.98.4.148398/4/1483[pii] PubMedCrossRefGoogle Scholar
  63. Wall D, Zylicz M, Georgopoulos C (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 269:5446–5451PubMedGoogle Scholar
  64. Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571. doi: 10.1038/sj.embor.74001727400172[pii] PubMedCrossRefGoogle Scholar
  65. Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944. doi: 10.1021/bi027333o PubMedCrossRefGoogle Scholar
  66. Wu Y, Li J, Jin Z, Fu Z, Sha B (2005) The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005–1011. doi: S0022-2836(04)01610-9[pii]10.1016/j.jmb.2004.12.040 PubMedCrossRefGoogle Scholar
  67. Yamamoto M, Maruyama D, Endo T, Nishikawa S (2008) Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. Plant Cell Physiol 49:1547–1562. doi: pcn119[pii]10.1093/pcp/pcn119 PubMedCrossRefGoogle Scholar
  68. Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17:4809–4817. doi: 10.1093/emboj/17.16.4809 PubMedCrossRefGoogle Scholar
  69. Zhang Y, Grant B, Hirsh D (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12:2011–2021PubMedGoogle Scholar
  70. Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73:1175–1186. doi: 0092-8674(93)90646-8[pii] PubMedCrossRefGoogle Scholar
  71. Zhou R, Kroczynska B, Hayman GT, Miernyk JA (1995) AtJ2, an arabidopsis homolog of Escherichia coli dnaJ. Plant Physiol 108:821–822. doi: 108/2/821[pii] PubMedCrossRefGoogle Scholar
  72. Zhou R, Kroczynska B, Miernyk JA (1999) AtJ3 (accession no. U22340), an Arabidopsis J-protein homologous to Saccharomyces cerevisiae YDJ1p. Plant Physiol 121:1053–1055CrossRefGoogle Scholar
  73. Zhu JK, Shi J, Bressan RA, Hasegawa PM (1993) Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 5:341–349. doi: 10.1105/tpc.5.3.3415/3/341[pii] PubMedCrossRefGoogle Scholar
  74. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994. doi: 10.1371/journal.pone.0001994 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Biochemistry DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations