Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks

  • Javier Brumós
  • José M. Colmenero-Flores
  • Ana Conesa
  • Pedro Izquierdo
  • Guadalupe Sánchez
  • Domingo J. Iglesias
  • María F. López-Climent
  • Aurelio Gómez-Cadenas
  • Manuel TalónEmail author
Original Paper


Salinity tolerance in Citrus is strongly related to leaf chloride accumulation. Both chloride homeostasis and specific genetic responses to Cl toxicity are issues scarcely investigated in plants. To discriminate the transcriptomic network related to Cl toxicity and salinity tolerance, we have used two Cl salt treatments (NaCl and KCl) to perform a comparative microarray approach on two Citrus genotypes, the salt-sensitive Carrizo citrange, a poor Cl excluder, and the tolerant Cleopatra mandarin, an efficient Cl excluder. The data indicated that Cl toxicity, rather than Na+ toxicity and/or the concomitant osmotic perturbation, is the primary factor involved in the molecular responses of citrus plant leaves to salinity. A number of uncharacterized membrane transporter genes, like NRT1-2, were differentially regulated in the tolerant and the sensitive genotypes, suggesting its potential implication in Cl homeostasis. Analyses of enriched functional categories showed that the tolerant rootstock induced wider stress responses in gene expression while repressing central metabolic processes such as photosynthesis and carbon utilization. These features were in agreement with phenotypic changes in the patterns of photosynthesis, transpiration, and stomatal conductance and support the concept that regulation of transpiration and its associated metabolic adjustments configure an adaptive response to salinity that reduces Cl accumulation in the tolerant genotype.


Chloride transport Salt stress Citrus rootstock Genomics Carbon metabolism 



Work at Centro de Genómica was supported by INCO UE project 015453 and Ministerio de Educación y Ciencia-FEDER grant AGL2007-65437-C04-01/AGR. Help and expertise of A. Almenar, A. Boix, A. López, E Blázquez, I. López, I. Sanchís, and M. Sancho are gratefully acknowledged.

Supplementary material

10142_2008_107_MOESM1_ESM.xls (478 kb)
Supplemental Tables (XLS 478 kb)
10142_2008_107_MOESM2_ESM.ppt (490 kb)
Supplemental Figures (PPT 490 kb)


  1. Ancillo G, Gadea J, Forment J, Guerri J, Navarro L (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933PubMedCrossRefGoogle Scholar
  2. Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talón M, Gómez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Reg 46:153–160CrossRefGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  4. Bañuls J, Primo-Millo E (1992) Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiol Plantarum 86:115–123CrossRefGoogle Scholar
  5. Bañuls J, Primo-Millo E (1995) Effects of salinity on some Citrus scion-rootstock combinations. Ann Bot 76:97–102CrossRefGoogle Scholar
  6. Bañuls J, Serna MD, Legaz F, Talon M, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199Google Scholar
  7. Barrett HC, Rhodes AM (1976) Numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136CrossRefGoogle Scholar
  8. Blüthgen N, Kielbasa SM, Herzel H (2005) Inferring combinatorial regulation of transcription in silico. Nucl Acids Res 33:272–279PubMedCrossRefGoogle Scholar
  9. Cercos M, Soler G, Iglesias D, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of Citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527PubMedCrossRefGoogle Scholar
  10. Colmenero-Flores JM, Moreno LP, Smith C, Covarrubias AA (1999) Pvlea-18, a member of a new late embryogenesis abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–103PubMedCrossRefGoogle Scholar
  11. Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292PubMedCrossRefGoogle Scholar
  12. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  13. Conesa A, Nueda MJ, Ferrer A, Talon M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102PubMedCrossRefGoogle Scholar
  14. Cramer G, Ergül A, Grimplet J, Tillett R, Tattersall E, Bohlman M, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  15. De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The Nitrate/Proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942PubMedCrossRefGoogle Scholar
  16. de Vries SC, Springer J, Wessels JGH (1982) Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156:129–135CrossRefGoogle Scholar
  17. Fecht-Bartenbach JVD, Bogner M, Krebs M, Stierhof Y-D, Schumacher K, Ludewig U (2007) Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J 50:466–474PubMedCrossRefGoogle Scholar
  18. Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Arribas R, Beltran JP, Berbel A, Blazquez MA, Brumos J, Canas LA, Cercos M, Colmenero-Flores JM, Conesa A, Estables B, Gandia M, Garcia-Martinez JL, Gimeno J, Gisbert A, Gomez G, Gonzalez-Candelas L, Granell A, Guerri J, Lafuente MT, Madueño F, Marcos JF, Marques MC, Martinez F, Martinez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallas V, Perez-Amador MA, Perez-Valle J, Pons C, Rodrigo I, Rodriguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talon M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarias L, Conejero V (2005) Development of a Citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391PubMedCrossRefGoogle Scholar
  19. Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Müller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20:1875–1887PubMedCrossRefGoogle Scholar
  20. Gandía M, Conesa A, Ancillo G, Gadea J, Forment J, Pallás V, Flores R, Duran-Vila N, Moreno P, Guerri J (2007) Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 367:298–306PubMedCrossRefGoogle Scholar
  21. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674PubMedCrossRefGoogle Scholar
  22. Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267PubMedCrossRefGoogle Scholar
  23. Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of Citrus seedlings to salt shock. Physiol Plant 103:475–484CrossRefGoogle Scholar
  24. Gómez-Cadenas A, Iglesias DJ, Arbona V, Colmenero-Flores JM, Primo-Millo E, Talón M (2003) in Recent Res Devel Plant Mol Biol, vol. 1, pp 281–298, Research Signpost, KeralGoogle Scholar
  25. Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638PubMedCrossRefGoogle Scholar
  26. Herde O, Peña-Cortés HL, Willmitzer L, Fisahn J (1997) Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ 20:136–141CrossRefGoogle Scholar
  27. Huang N-C, Liu K-H, Lo H-J, Tsay Y-F (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392PubMedCrossRefGoogle Scholar
  28. Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007) Physiology of Citrus fruiting. Braz J Plant Physiol 19(4):333–362CrossRefGoogle Scholar
  29. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568PubMedGoogle Scholar
  30. Jeong J, Suh S, Guan C, Tsay Y-F, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978PubMedCrossRefGoogle Scholar
  31. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906PubMedCrossRefGoogle Scholar
  32. Khelil A, Menu T, Ricard B (2007) Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol Biochem 45:551–559PubMedCrossRefGoogle Scholar
  33. Liu KH, Huang CY, Tsay Y-F (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involving multiple phases of nitrate uptake. Plant Cell 11:865–874PubMedCrossRefGoogle Scholar
  34. López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in Citrus. Env Exp Bot 62:176–184CrossRefGoogle Scholar
  35. Lurin C, Geelen D, Barbier-Brygoo H, Guern J, Maurel C (1996) Cloning and functional expression of a plant voltage-dependent chloride channel. Plant Cell 8(4):701–711, 8:701–711PubMedCrossRefGoogle Scholar
  36. Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216PubMedGoogle Scholar
  37. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence. A practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  38. Moya JL, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in Citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22:1425–1433CrossRefGoogle Scholar
  39. Moya JL, Tadeo FR, Gomez-Cadenas A, Primo-Millo E, Talon M (2002) Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra Citrus genotypes. J Plant Physiol 159:991–998CrossRefGoogle Scholar
  40. Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin Citrus rootstocks is linked to water use. J Exp Bot 54:825–833PubMedCrossRefGoogle Scholar
  41. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  42. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  43. Myhre S, Tveit H, Mollestad T, Laegreid A (2006) Additional gene ontology structure for improved biological reasoning. Bioinformatics 22:2020–2027PubMedCrossRefGoogle Scholar
  44. Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486PubMedCrossRefGoogle Scholar
  45. Nueda MJ, Conesa A, Westerhuis JA, Hoefsloot HCJ, Smilde AK, Talon M, Ferrer A (2007) Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA. Bioinformatics 23:1792–1800PubMedCrossRefGoogle Scholar
  46. Ozturk ZN, Talamè V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573CrossRefGoogle Scholar
  47. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefGoogle Scholar
  48. Pierik R, Tholen D, Poorter H, Visser E, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. TRENDS Plant Sci 11:176–183PubMedCrossRefGoogle Scholar
  49. Poorter H (2002) Plant growth and carbon economy. In: Encyclopedia of life sciences. Macmillan Publisher, Nature Publishing Group, LondonGoogle Scholar
  50. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucl Acids Res 33:W116–W120PubMedCrossRefGoogle Scholar
  51. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375PubMedCrossRefGoogle Scholar
  52. Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666PubMedCrossRefGoogle Scholar
  53. Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant Citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21:1243–1253CrossRefGoogle Scholar
  54. Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plantarum 127:1–9CrossRefGoogle Scholar
  55. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  56. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  57. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Huber W, Irizarry R, Duboit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, Berlin, pp 397–420CrossRefGoogle Scholar
  58. Storey R, Walker RR (1999) Citrus and salinity. Sci Hort 78:39–81CrossRefGoogle Scholar
  59. Sugiura M, Georgescu MN, Takahashi M (2007) A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol 48:1022–1035PubMedCrossRefGoogle Scholar
  60. Suh SJ, Wang Y-F, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007) The ATP Binding Cassette Transporter AtMRP5 Modulates Anion and Calcium Channel Activities in Arabidopsis Guard Cells. J Biol Chem 282:1916-1924CrossRefGoogle Scholar
  61. Syvertsen JP, Boman B, Tucker DPH (1989) Salinity in Florida Citrus production. Proc Fla State Hort Soc 102:61–64Google Scholar
  62. Tadeo F, Cercos M, Colmenero-Flores JM, Iglesias DJ, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Talon M (2008) Molecular physiology of development and quality of Citrus. Adv Bot Res 47:147–223CrossRefGoogle Scholar
  63. Talon M, Gmitter FGJ (2008) Citrus genomics. Int J Plant Genomics ID 528361Google Scholar
  64. Terol J, Conesa A, Colmenero J, Cercos M, Tadeo F, Agusti J, Alos E, Andres F, Soler G, Brumos J, Iglesias D, Gotz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31PubMedCrossRefGoogle Scholar
  65. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917CrossRefGoogle Scholar
  66. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988CrossRefGoogle Scholar
  67. Wing-Yen FL, Fuk-Ling W, Sau-Na T, Tsui-Hung P, Guihua S, Hon-Ming L (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122CrossRefGoogle Scholar
  68. Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition. In Advances in Agronomy. Elsevier vol 68, pp 96–150Google Scholar
  69. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl Acids Res 30:e15PubMedCrossRefGoogle Scholar
  70. Yeo AR, Lee L-S, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bot 42:881–889CrossRefGoogle Scholar
  71. Yokoyama T, Kodama N, Aoshima H, Izu H, Matsushita K, Yamada M (2001) Cloning of a cDNA for a constitutive NRT1 transporter from soybean and comparison of gene expression of soybean NRT1 transporters. Biochim Biophys Acta 1518:79–86PubMedGoogle Scholar
  72. Zhou J-J, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Javier Brumós
    • 1
  • José M. Colmenero-Flores
    • 1
    • 4
  • Ana Conesa
    • 3
  • Pedro Izquierdo
    • 1
  • Guadalupe Sánchez
    • 1
  • Domingo J. Iglesias
    • 1
  • María F. López-Climent
    • 2
  • Aurelio Gómez-Cadenas
    • 2
  • Manuel Talón
    • 1
    Email author
  1. 1.Instituto Valenciano de Investigaciones AgrariasCentro de GenómicaMoncadaSpain
  2. 2.Departament de Ciències AgràriesUniversitat Jaume I. Campus de Riu Sec (E.S.T.C.E.)Castelló de la PlanaSpain
  3. 3.Department of BioinformaticsCentro de Investigación Príncipe FelipeValenciaSpain
  4. 4.Instituto de Recursos Naturales y AgrobiologíaConsejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations