Functional & Integrative Genomics

, Volume 7, Issue 3, pp 207–219 | Cite as

Measuring global gene expression in polyploidy; a cautionary note from allohexaploid wheat

  • Rebecca Poole
  • Gary Barker
  • Ian D. Wilson
  • Jane A. Coghill
  • Keith J. Edwards
Original Paper

Abstract

The number of global gene expression studies has increased significantly in recent years. It is assumed that the different techniques employed report similar levels of gene expression for each sequence type. While this may be true for many species, polyploids containing homoeologous and paralogous gene copies represent a unique situation. In this paper, we describe the comparison of the Affymetrix GeneChip® Wheat Genome Array, an in-house custom-spotted complementary DNA array and quantitative reverse transcription-polymerase chain reaction (PCR) for the study of gene expression in hexaploid wheat. Analysis of the data generated from each platform revealed little concordance and suggested that global comparisons are not possible. Potential causes of these inter-platform discrepancies were investigated and revealed to be due to the inability of the platforms to discriminate between different but related transcripts. Our results also showed that the traditionally used array validation technique, quantitative reverse transcription PCR, differs in its discriminatory ability, resulting in the poor confirmation rates seen in previous polyploid studies. These findings have implications for gene expression studies in polyploid organisms and highlight the need for homoeologous- and paralogous-specific arrays when investigating polyploid gene expression.

Keywords

Triticum aestivum Affymetrix GeneChip array cDNA microarrays Polyploids 

Notes

Acknowledgement

We are grateful to the Biotechnology and Biological Sciences Research Council, UK (BBSRC Agri-Food), for providing the main funding for this work (ref. D17385). Ian Wilson was funded by a BBSRC GDB award (ref. BBSB07446) and Gary Barker by a BBSRC GDB award (ref. G20322). Our thanks to Andrew Hughes and Guy Donaldson for their invaluable assistance with the controlled environment growth of wheat plants.

Supplementary material

10142_2007_46_MOESM1_ESM.xls (25.9 mb)
S1 All data for three technical replicates of the Affymetrix GeneChip® Wheat Genome Array (XLS 27.189 mb).
10142_2007_46_MOESM2_ESM.htm (425 kb)
S2 Cluster 1 from the AutoSNP (Barker et al. 2003) output of ESTs that match the array features of Pair 4 with BLASTn expect score Ee −20. Coloured bases within each sequence represent putative SNPs (HTM 435 kb).
10142_2007_46_MOESM3_ESM.htm (55 kb)
S3 Cluster 2 from the AutoSNP (Barker et al. 2003) output of ESTs that match the array features of Pair 4 with BLASTn expect score Ee −20. Coloured bases within each sequence represent putative SNPs (HTM 56 kb).
10142_2007_46_MOESM4_ESM.htm (322 kb)
S4 Cluster 3 from the AutoSNP (Barker et al. 2003) output of ESTs that match the array features of Pair 4 with BLASTn expect score Ee −20. Coloured bases within each sequence represent putative SNPs (HTM 329 kb).
10142_2007_46_MOESM5_ESM.htm (34 kb)
S5 AutoSNP (Barker et al. 2003) output for all sequences that match the array features of Pair 2 with BLASTn expect score Ee −20. Coloured bases within each sequence represent putative SNPs (HTM 35 kb).

References

  1. Ainsworth C, Tarvis M, Clark J (1993) Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol 23(1):23–33PubMedCrossRefGoogle Scholar
  2. Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Choi DW, Close TJ, Dilbirliqi M, Gill KS, Walker-Simmons MK, Steber C, Mcguire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13(5):753–763PubMedCrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedGoogle Scholar
  4. Barker G, Batley J, O’Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using AutoSNP. Bioinformatics 19(3):421–422PubMedCrossRefGoogle Scholar
  5. Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P (2005) Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res 33(18):5914–5923PubMedCrossRefGoogle Scholar
  6. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4(4):369–380PubMedCrossRefGoogle Scholar
  7. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76(2):113–176CrossRefGoogle Scholar
  8. Brenner S, Johnson M, Bridgham J, Golda G, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):597–598CrossRefGoogle Scholar
  9. Carter SL, Eklund AC, Mecham BH, Kohane IS, Szallasi Z (2005) Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics 6:107PubMedCrossRefGoogle Scholar
  10. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploidy wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045PubMedCrossRefGoogle Scholar
  11. Elo LL, Lahti L, Skottman H, Kylaniemi M, Lahesmaa R, Aittokallio T (2005) Integrating probe level expression changes across generations of Affymetrix arrays. Nucleic Acids Res 33(22):e193PubMedCrossRefGoogle Scholar
  12. Galbraith DW, Birnbaum K (2006) Global studies of cell type-specific gene expression in plants. Annu Rev Plant Biol 57:451–475PubMedCrossRefGoogle Scholar
  13. Ge H, Player CM, Zou L (2006) Toward a global picture of development: lessons from genome-scale analysis in Caenorhabditis elegans embryonic development. Dev Dyn 235(8):2009–2017PubMedCrossRefGoogle Scholar
  14. Gilad Y, Rifkin SA, Bertone P, Gerstein M, White KP (2005) Multi-species microarrays reveal the affect of sequence divergence on gene expression profiles. Genome Res 15(5):674–680PubMedCrossRefGoogle Scholar
  15. Gregersen PL, Brinch-Pedersen H, Holm PB (2005) A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res 14(6):887–905PubMedCrossRefGoogle Scholar
  16. Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridisation in Senecio is ameliorated by genome duplication. Curr Biol 16(16):1652–1659PubMedCrossRefGoogle Scholar
  17. Heller RA, Schena M, Chai A, Shalon D, Bedilion T, Gilmore J, Wooley DE, Davis RW (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA 94(6):2150–2155PubMedCrossRefGoogle Scholar
  18. Hwang KB, Kong SW, Greenberg SA, Park PJ (2004) Combining gene expression data form different generations of oligonucleotide arrays. BMC Bioinformatics 5:159PubMedCrossRefGoogle Scholar
  19. Ibrahim AFM, Hedley PE, Cardle L, Kruger W, Marshall DF, Muehlbauer GJ, Waugh R (2005) A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct Integr Genomics 5(3):163–174PubMedCrossRefGoogle Scholar
  20. Ishigaki S, Niwa J, Ando Y, Yoshihara T, Sawada K, Doyu M, Yamamoto M, Kato K, Yotsumoto Y, Sobue G (2002) Differentially expressed genes in sporadic amyotrophic lateral sclerosis spinal cords: screening by molecular indexing and subsequent cDNA microarray analysis. FEBS Lett 531(2):354–358PubMedCrossRefGoogle Scholar
  21. Jarvinen AK, Hautaniemi S, Edgren H, Auvinen P, Saarela J, Kalliomiemi OP, Monni O (2004) Are data from different gene expression microarray platforms comparable? Genomics 83(6):1164–1168PubMedCrossRefGoogle Scholar
  22. Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28(22):4552–4557PubMedCrossRefGoogle Scholar
  23. Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22 k oligo-DNA microarray. Funct Integr Genomics 276(3):304–312Google Scholar
  24. Kirst M, Caldo R, Casati P, Tanimoto G, Walbot V, Wise RP, Buckler ES (2006) Genetic diversity contribution to errors in short oligonucleotide microarray analysis. Plant Biotechnol J 4(5):489–498PubMedGoogle Scholar
  25. Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18(3):405–412PubMedCrossRefGoogle Scholar
  26. Li J, Pankratz M, Johnson JA (2002) Differential gene expression patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol Sci 69(2):383–390PubMedCrossRefGoogle Scholar
  27. Mecham BH, Klus GT, Strovel J, Augustus M, Byrne D, Bozso P, Wetmore DZ, Marriani TJ, Kohane I, Szallasi Z (2004) Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements. Nucleic Acids Res 32(9):e74PubMedCrossRefGoogle Scholar
  28. Mitra R, Bhatia CR (1973) Repeated and non-repeated nucleotide sequences in diploid and polyploidy wheat species. Heredity 31:251–262Google Scholar
  29. Nimgaonkar A, Sanoudou D, Butte AJ, Haslett JN, Kunkel LM, Beggs AH, Kohane IS (2003) Reproducibility of gene expression across generations of Affymetrix microarrays. BMC Bioinformatics 4:27PubMedCrossRefGoogle Scholar
  30. Pylatuik JD, Fobert PR (2005) Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol Biol 58(5):609–624PubMedCrossRefGoogle Scholar
  31. Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10(12):603–609PubMedCrossRefGoogle Scholar
  32. Rogojina AT, Orr WE, Song BK, Geisert EE Jr (2003) Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Mol Vis 9:482–496PubMedGoogle Scholar
  33. Ronald J, Akey JM, Whittle J, Smith EN, Yvert G, Kruglyak L (2005) Simultaneous genotyping, gene-expression measurement and detection of allele-specific expression with oligonucleotide arrays. Genome Res 15(2):284–291PubMedCrossRefGoogle Scholar
  34. Shena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470CrossRefGoogle Scholar
  35. Sherwin R, Catalano R, Sharkey A (2006) Large-scale gene expression studies of the endometrium: what have we learnt? Reproduction 132(1):1–10PubMedCrossRefGoogle Scholar
  36. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31(19):5676–5684PubMedCrossRefGoogle Scholar
  37. Tuteja R, Tuteja N (2004) Serial analysis of gene expression: applications in human studies. J Biomed Biotechnol 2:113–120CrossRefGoogle Scholar
  38. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487PubMedCrossRefGoogle Scholar
  39. Wilson ID, Barker GLA, Beswick RW, Shepherd SK, Lu C, Coghill JA, Edwards D, Owen P, Lyons R, Parker JS, Lenton JR, Holdsworth MJ, Shewry PR, Edwards KJ (2004) A transcriptomics resource for wheat functional genomics. Plant Biotechnol J 2(6):495–506PubMedCrossRefGoogle Scholar
  40. Wilson ID, Barker GLA, Lu C, Coghill JA, Beswick RW, Lenton J, Edwards KJ (2005) Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv. Mercia) during maturation and germination. Funct Integr Genomics 5(3):144–154PubMedCrossRefGoogle Scholar
  41. Woo Y, Affourtit J, Daigle S, Viale A, Johnson K, Naggert J, Churchill G (2004) A comparison of cDNA, oligonucleotide and Affymetrix GeneChip gene expression microarray platforms. J Biomol Tech 15(4):276–284PubMedGoogle Scholar
  42. Wurmbach E, Yuen T, Sealfon SC (2003) Focused microarray analysis. Methods 31(4):306–316PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Rebecca Poole
    • 1
  • Gary Barker
    • 1
  • Ian D. Wilson
    • 1
  • Jane A. Coghill
    • 1
  • Keith J. Edwards
    • 1
  1. 1.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations