Functional & Integrative Genomics

, Volume 5, Issue 3, pp 129–135

Plant and animal microRNAs: similarities and differences

Review

Abstract

Plant and animal microRNAs (miRNAs) are evolutionarily ancient small RNAs, ∼19–24 nucleotides in length, that are generated by cleavage from larger highly structured precursor molecules. In both plants and animals, miRNAs posttranscriptionally regulate gene expression through interactions with their target mRNAs, and these targets are often genes involved with regulating key developmental events. Despite these similarities, plant and animal miRNAs exert their control in fundamentally different ways. Generally, animal miRNAs repress gene expression by mediating translational attenuation through (multiple) miRNA-binding sites located within the 3′ untranslated region of the target gene. In contrast, almost all plant miRNAs regulate their targets by directing mRNA cleavage at single sites in the coding regions. These and other differences suggest that the two systems may have originated independently, possibly as a prerequisite to the development of complex body plans.

References

  1. Altuvia S (2004) Regulatory small RNAs: the key to co-ordinating global regulatory circuits. J Bacteriol 186:6679–6680CrossRefPubMedGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:244–350CrossRefGoogle Scholar
  3. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818CrossRefPubMedGoogle Scholar
  4. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350CrossRefPubMedGoogle Scholar
  5. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741CrossRefPubMedGoogle Scholar
  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  7. Bartel B, Bartel DP (2003) MicroRNAs—at the root of plant development? Plant Physiol 132:709–717CrossRefPubMedGoogle Scholar
  8. Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101:11511–11516CrossRefPubMedGoogle Scholar
  9. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025CrossRefPubMedGoogle Scholar
  10. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511CrossRefPubMedGoogle Scholar
  11. Doench JG, Peterson CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442CrossRefPubMedGoogle Scholar
  12. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1CrossRefPubMedGoogle Scholar
  13. Floyd SF, Bowman JL (2004) Ancient microRNA target sequences in plants. Nature 428:485–486CrossRefPubMedGoogle Scholar
  14. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLOS Biol 2:e363CrossRefPubMedGoogle Scholar
  15. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799CrossRefPubMedGoogle Scholar
  16. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217CrossRefPubMedGoogle Scholar
  17. Kuersten S, Goodwin EB (2003) The power of the 3′ UTR-translational control and development. Nat Rev Genet 4:626–637CrossRefPubMedGoogle Scholar
  18. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMedGoogle Scholar
  19. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862CrossRefPubMedGoogle Scholar
  20. Lee RC, Feinbaum R, Ambros V (1993) The heterochronic gene lin-4 of C. elegans encodes two small RNAs with antisense complementarity to lin41. Cell 75:843–854CrossRefPubMedGoogle Scholar
  21. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798CrossRefPubMedGoogle Scholar
  22. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  23. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003a) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008CrossRefPubMedGoogle Scholar
  24. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003b) Vertebrate microRNA genes. Science 299:1540CrossRefPubMedGoogle Scholar
  25. Llave C, Kasschau KD, Rector MA, Carrington JC (2002a) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619CrossRefPubMedGoogle Scholar
  26. Llave C, Xie Z, Kasschau KD, Carrington JC (2002b) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056CrossRefPubMedGoogle Scholar
  27. Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485CrossRefPubMedGoogle Scholar
  28. Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721CrossRefPubMedGoogle Scholar
  29. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680CrossRefPubMedGoogle Scholar
  30. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263CrossRefPubMedGoogle Scholar
  31. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242CrossRefPubMedGoogle Scholar
  32. Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495CrossRefPubMedGoogle Scholar
  33. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda M, Maller B, Srinivasan A, Fishman M, Hayward D, Ball E et al (2000) Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA. Nature 408:86–89CrossRefPubMedGoogle Scholar
  34. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626CrossRefPubMedGoogle Scholar
  35. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520CrossRefPubMedGoogle Scholar
  36. Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243:215–225CrossRefPubMedGoogle Scholar
  37. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004) A large imprinted microRNA gene cluster at the mouse Dlk1–Gtl2 domain. Genome Res 9:1741–1748CrossRefGoogle Scholar
  38. Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLOS Biol 1:E60CrossRefPubMedGoogle Scholar
  39. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019CrossRefPubMedGoogle Scholar
  40. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63CrossRefPubMedGoogle Scholar
  41. Voinnet O (2003) RNA silencing bridging the gaps in wheat extracts. Trends Plant Sci 8:307–309CrossRefPubMedGoogle Scholar
  42. Wrightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5:1813–1824PubMedGoogle Scholar
  43. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789CrossRefPubMedGoogle Scholar
  44. Yekta S, Shih I-H, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596CrossRefPubMedGoogle Scholar
  45. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779–9784CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.CSIRO Division of Plant IndustryCanberraAustralia

Personalised recommendations