Functional & Integrative Genomics

, Volume 5, Issue 3, pp 144–154 | Cite as

Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv. Mercia) during maturation and germination

  • Ian D. Wilson
  • Gary L. A. Barker
  • Chungui Lu
  • Jane A. Coghill
  • Richard W. Beswick
  • John R. Lenton
  • Keith J. Edwards
Original Paper

Abstract

Grain dormancy and germination are areas of biology that are of considerable interest to the cereal community. We have used a 9,155-feature wheat unigene cDNA microarray resource to investigate changes in the wheat embryo transcriptome during late grain development and maturation and during the first 48 h of postimbibition germination. In the embryo 392 mRNAs accumulated by twofold or greater over the time course from 21 days postanthesis (dpa) to 40 dpa and on through 1 and 2 days postgermination. These included mRNAs encoding proteins involved in amino acid biosynthesis and metabolism, cell division and subsequent cell development, signal transduction, lipid metabolism, energy production, protein turnover, respiration, initiation of transcription, initiation of translation and ribosomal composition. A number of mRNAs encoding proteins of unknown function also accumulated over the time course. Conversely 163 sequences showed decreases of twofold or greater over the time course. A small number of mRNAs also showed rapid accumulation specifically during the first 48 h of germination. We also examined alterations in the accumulation of transcripts encoding proteins involved in abscisic acid signalling. Thus, we describe changes in the level of transcripts encoding wheat Viviparous 1 (Vp1) and other interacting proteins. Interestingly, the transcript encoding wheat Viviparous-interacting protein 1 showed a pattern of accumulation that correlates inversely with germination. Our data suggests that the majority of the transcripts required for germination accumulate in the embryo prior to germination and we discuss the implications of these findings with regard to manipulation of germination in wheat.

Keywords

Triticum aestivum Microarray Dormancy Germination Embryo 

Supplementary material

Table 1 Microarray-hybridising, hexaploid wheat sequences that accumulated (ANOVA P0.05) during embryo maturation and germination

s10142_2005_137_ESM_supp_t1.pdf (229 kb)
(PDF 229 KB)

Table 2 Microarray-hybridising, hexaploid wheat sequences that declined (ANOVA P0.05) during embryo maturation and germination

s10142_2005_137_ESM_supp_t2.pdf (106 kb)
(PDF 106 KB)

References

  1. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol 125(3):1248–1257CrossRefGoogle Scholar
  2. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274CrossRefGoogle Scholar
  3. Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284CrossRefGoogle Scholar
  4. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066CrossRefPubMedGoogle Scholar
  5. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum, New YorkGoogle Scholar
  6. Botha FC, Potgieter GP, Botha AM (1992) Respiratory metabolism and gene expression during seed germination. J Plant Growth Regul 11:211–224CrossRefGoogle Scholar
  7. Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Genome Biol 3(1):1–5CrossRefGoogle Scholar
  8. Chen GP, Wilson ID, Kim SH, Grierson D (2001) Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit. Planta 212(5–6):799–807CrossRefPubMedGoogle Scholar
  9. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, Linehan WM, Knezevic V, Emmert-Buck MR (2002) Post-analysis follow-up and validation of microarray experiments. Nat Genet 32(Suppl):509–514CrossRefGoogle Scholar
  10. Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424CrossRefGoogle Scholar
  11. Dommes J, Van der Walles C (1990) Polysome formation and incorporation of new ribosomes into polysomes during germination of the embryonic axis of maize. Physiol Plant 79:289–296CrossRefGoogle Scholar
  12. Farras R, Ferrando A, Jasik J, Kleinow T, Okresz L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20(11):2742–2756CrossRefGoogle Scholar
  13. Finkelstein RR, Zeevaart JAD (1994) Gibberellin and abscisic acid biosynthesis and response. In: Somerville C, Meyerowitz E (eds) Arabidopsis Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  14. Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann NY Acad Sci 684:174–192Google Scholar
  15. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126(2):835–848CrossRefGoogle Scholar
  16. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002a) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129(2):823–837CrossRefPubMedGoogle Scholar
  17. Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002b) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116(2):238–247CrossRefGoogle Scholar
  18. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4(10):1251–1261CrossRefPubMedGoogle Scholar
  19. Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124(4):1570–1581CrossRefGoogle Scholar
  20. Glevarec G, Bouton S, Jaspard E, Riou MT, Cliquet JB, Suzuki A, Limami AM (2004) Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219(2):286–297CrossRefGoogle Scholar
  21. Hattori T, Terada T, Hamasuna ST (1994) Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol Biol 24(5):805–810CrossRefGoogle Scholar
  22. Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53(374):1569–1574CrossRefGoogle Scholar
  23. Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96(26):15348–15353CrossRefGoogle Scholar
  24. Ilijima M, Kano Y, Nohno T, Namba M (1996) Cloning of a cDNA with possible transcription factor activity at the G1-S phase transition in human fibroblast cell lines. Acta Med Okayama 50:73–77Google Scholar
  25. Jones HD, Peters NC, Holdsworth MJ (1997) Genotype and environment interact to control dormancy and differential expression of the Viviparous 1 homologue in embryos of Avena fatua. Plant J 12(4):911–920CrossRefGoogle Scholar
  26. Jones HD, Kurup S, Peters NC, Holdsworth MJ (2000) Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor Viviparous 1. Plant J 21(2):133–142CrossRefGoogle Scholar
  27. Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985CrossRefGoogle Scholar
  28. Koornneef M, Reuling G, Karssen C (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383Google Scholar
  29. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36CrossRefGoogle Scholar
  30. Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B (2000) Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12:2395–2408CrossRefGoogle Scholar
  31. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with alpha-L-arabinofuranosidase and beta-D-xylosidase activity. Characterization, primary structures, and COOH-terminal processing. J Biol Chem 278(7):5377–5387CrossRefGoogle Scholar
  32. Limami AM, Rouillon C, Glevarec G, Gallais A, Hirel B (2002) Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiol 130(4):1860–1870CrossRefPubMedGoogle Scholar
  33. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66(5):895–905CrossRefGoogle Scholar
  34. McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99(15):10203–10208CrossRefGoogle Scholar
  35. Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol 36(8):1405–1420Google Scholar
  36. Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol 132(4):1950–1960CrossRefGoogle Scholar
  37. Muntz K, Belozersky MA, Dunaevsky YE, Schlereth A, Tiedemann J (2001) Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J Exp Bot 52(362):1741–1752CrossRefGoogle Scholar
  38. Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121:629–636Google Scholar
  39. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15(7):1591–1604Google Scholar
  40. Orwant J, Hietaniemi J, Macdonald J (1999) In: Oram A, Orwant J (eds) Mastering algorithms with Perl. O’Reilly, Sebastopol, Calif.Google Scholar
  41. Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106(8):1491–1496Google Scholar
  42. Potokina E, Sreenivasulu N, Altschmied L, Michalek W, Graner A (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct Integr Genomics 2(1–2):28–39CrossRefGoogle Scholar
  43. Ramaih S, Guedira M, Paulsen GM (2003) Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol 30(9):939–945CrossRefGoogle Scholar
  44. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276(5320):1872–1874CrossRefGoogle Scholar
  45. Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JA (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim Biophys Acta 1619(1):9–14Google Scholar
  46. Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of Viviparous1 has a cooperative DNA binding activity. Plant Cell 9(5):799–807CrossRefGoogle Scholar
  47. Suzuki M, Ketterling MG, Li QB, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132(3):1664–1677CrossRefPubMedGoogle Scholar
  48. Thomas C, Meyer D, Wolff M, Himber C, Alioua M, Steinmetz A (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52(5):1025–1036CrossRefGoogle Scholar
  49. Tiedemann J, Neubohn B, Muntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211(1):1–12CrossRefGoogle Scholar
  50. Van der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94(2):137–155CrossRefPubMedGoogle Scholar
  51. Wilson ID, Barker GLA, Beswick RW, Shepherd SK, Lu C, Coghill JA, Edwards D, Owen P, Lyons R, Parker JS, Lenton JR, Holdsworth MJ, Shewry PR, Edwards KJ (2004) A transcriptomics resource for wheat functional genomics. Plant Biotechnol J 2:495–506CrossRefGoogle Scholar
  52. Wurmbach E, Yuen T, Sealfon SC (2003) Focused microarray analysis. Methods 31(4):306–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ian D. Wilson
    • 1
  • Gary L. A. Barker
    • 1
  • Chungui Lu
    • 1
    • 2
  • Jane A. Coghill
    • 1
  • Richard W. Beswick
    • 1
    • 3
  • John R. Lenton
    • 1
  • Keith J. Edwards
    • 1
  1. 1.Department of Biological SciencesUniversity of BristolBristolUK
  2. 2.Rothamsted ResearchHarpendenUK
  3. 3.Department of HaematologyHammersmith HospitalLondonUK

Personalised recommendations