Advertisement

Clinical applications of a computed tomography color “marrow mapping” algorithm to increase conspicuity of nondisplaced trabecular fractures

  • Jacob C. Mandell
  • Bharti Khurana
Technical Note

Abstract

Purpose

To explore clinical applications of a novel conventional computed tomography (CT) color post-processing algorithm to increase conspicuity of nondisplaced trabecular fractures.

Materials and methods

The algorithm was created in Adobe Photoshop and Adobe Extendscript, utilizing DICOM images from conventional CT as source images. A total of six representative cases were selected and processed. No statistical analyses were performed.

Results

A total of six cases are demonstrated, five with MRI correlation demonstrating corresponding fractures and bone marrow edema, including a case of sacral insufficiency fracture, two cases of vertebral body fracture, two cases of nondisplaced hip fracture, and a knee bone marrow edema lesion (without MRI correlate). All cases were processed successfully without error.

Conclusions

A conventional CT color post-processing algorithm may be clinically useful in increasing conspicuity of nondisplaced fractures and bone marrow edema. A potential pitfall is the presence of subchondral or marrow sclerosis, which may mimic edema. Future prospective studies will be necessary to evaluate diagnostic performance.

Keywords

Computed tomography Color post-processing Image manipulation Bone contusion Occult fracture 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mandalia V, Henson JHL (2008) Traumatic bone bruising-a review article. Eur J Radiol 67(1):54–61CrossRefPubMedGoogle Scholar
  2. 2.
    Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, Schäfer O, Helwig P, Kotter E, Langer M, Baumann T (2010) Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions--feasibility study. Radiology 256(2):617–624CrossRefPubMedGoogle Scholar
  3. 3.
    Ai S, Qu M, Glazebrook KN, Liu Y, Rhee PC, Leng S, McCollough CH (2014) Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skelet Radiol 43(9):1289–1295CrossRefGoogle Scholar
  4. 4.
    Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, Heintel TM, Gassenmaier T, Bley TA (2017) Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology 284(1):161–168CrossRefPubMedGoogle Scholar
  5. 5.
    Wang C, Tsai J-M, Chuang M-T, Wang M-T, Huang K-Y, Lin R-M (2013) Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 269(2):525–533CrossRefPubMedGoogle Scholar
  6. 6.
    Kaup M, Wichmann JL, Scholtz J-E, Beeres M, Kromen W, Albrecht MH, Lehnert T, Boettcher M, Vogl TJ, Bauer RW (2016) Dual-energy CT–based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280(2):510–519CrossRefPubMedGoogle Scholar
  7. 7.
    Karaca L, Yuceler Z, Kantarci M, Cakir M, Sade R, Calikoglu C et al (2016) The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol 89(1057):20150300CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy T, McLaughlin PD, Mallinson PI, Reagan AC, Munk PL, Nicolaou S, Ouellette HA (2014) Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 22(1):25–29CrossRefPubMedGoogle Scholar
  9. 9.
    Kellock TT, Nicolaou S, Kim SSY, Al-Busaidi S, Louis LJ, O’Connell TW et al (2017) Detection of bone marrow edema in nondisplaced hip fractures: utility of a virtual noncalcium dual-energy CT application. Radiology 284(3):922–922CrossRefPubMedGoogle Scholar
  10. 10.
    Li M, Qu Y, Song B (2017) Meta-analysis of dual-energy computed tomography virtual non-calcium imaging to detect bone marrow edema. Eur J Radiol 95(37):124–129CrossRefPubMedGoogle Scholar
  11. 11.
    Reagan AC, Mallinson PI, O’Connell T, McLaughlin PD, Krauss B, Munk PL et al (2014) Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures. J Comput Assist Tomogr 38(5):802–805CrossRefPubMedGoogle Scholar
  12. 12.
    Henes FO, Groth M, Bley TA, Regier M, Nüchtern JV, Ittrich H, Treszl A, Adam G, Bannas P (2012) Quantitative assessment of bone marrow attenuation values at MDCT: an objective tool for the detection of bone bruise related to occult sacral insufficiency fractures. Eur Radiol 22(10):2229–2236CrossRefPubMedGoogle Scholar
  13. 13.
    Henes FO, Groth M, Kramer H, Schaefer C, Regier M, Derlin T, Adam G, Bannas P (2014) Detection of occult vertebral fractures by quantitative assessment of bone marrow attenuation values at MDCT. Eur J Radiol 83(1):167–172CrossRefPubMedGoogle Scholar
  14. 14.
    Mandell JC, Khurana B, Folio LR, Hyun H, Smith SE, Dunne RM et al (2017) Clinical applications of a CT window blending algorithm: RADIO (relative attenuation-dependent image overlay). J Digit Imaging 30(3):358–368CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mandell JC, Wortman JR, Rocha TC, Folio LR, Andriole KP, Khurana B (2018) Computed tomography window blending: feasibility in thoracic trauma. Acad Radiol.  https://doi.org/10.1016/j.acra.2017.12.029
  16. 16.
    Cooper KL, Beabout JW, Swee RG (1985) Insufficiency fractures of the sacrum. Radiology 156(1):15–20CrossRefPubMedGoogle Scholar
  17. 17.
    Mandell JC, Khurana B, Smith SE (2017) Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skeletal Radiol 46(8):1021–1029CrossRefPubMedGoogle Scholar
  18. 18.
    Park JW, Park SM, Lee HJ, Lee CK, Chang BS, Kim H (2017) Mortality following benign sacral insufficiency fracture and associated risk factors. Arch Osteoporos 12(1):100CrossRefPubMedGoogle Scholar
  19. 19.
    Yoder K, Bartsokas J, Averell K, McBride E, Long C, Cook C (2015) Risk factors associated with sacral stress fractures: a systematic review. J Man Manip Ther 23(2):84–92CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pham T, Azulay-Parrado J, Champsaur P, Chagnaud C, Legré V, Lafforgue P (2005) “Occult” osteoporotic vertebral fractures: vertebral body fractures without radiologic collapse. Spine (Phila Pa 1976) 30(21):2430–2435CrossRefGoogle Scholar
  21. 21.
    Na D, Hong SJ, Yoon MA, Ahn KS, Kang CH, Kim BH, Jang Y (2016) Spinal bone bruise: can computed tomography (CT) enable accurate diagnosis? Acad Radiol 23(11):1376–1383CrossRefPubMedGoogle Scholar
  22. 22.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733CrossRefPubMedGoogle Scholar
  23. 23.
    Evans PD, Wilson C, Lyons K (1994) Comparison of MRI with bone scanning for suspected hip fracture in elderly patients. J Bone Joint Surg Br 76(1):158–159CrossRefPubMedGoogle Scholar
  24. 24.
    Dominguez S, Liu P, Roberts C, Mandell M, Richman PB (2005) Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs - a study of emergency department patients. Acad Emerg Med 12(4):366–369PubMedGoogle Scholar
  25. 25.
    Rizzo PF, Gould ES, Lyden JP, Asnis SE (1993) Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone-scanning. J Bone Joint Surg Am 75(3):395–401CrossRefPubMedGoogle Scholar
  26. 26.
    Kim KC, Ha YC, Kim TY, Choi JA, Koo KH (2010) Initially missed occult fractures of the proximal femur in elderly patients: implications for need of operation and their morbidity. Arch Orthop Trauma Surg 130(7):915–920CrossRefPubMedGoogle Scholar
  27. 27.
    Peleg K, Rozenfeld M, Radomislensky I, Novikov I, Freedman LS, Israeli A (2014) Policy encouraging earlier hip fracture surgery can decrease the long-term mortality of elderly patients. Injury 45(7):1085–1090CrossRefPubMedGoogle Scholar
  28. 28.
    Rehman H, Clement RGE, Perks F, White TO (2016) Imaging of occult hip fractures: CT or MRI? Injury 47(6):1297–1301CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas RW, Williams HLM, Carpenter EC, Lyons K (2016) The validity of investigating occult hip fractures using multidetector CT. Br J Radiol 89(1060):20150250CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gill SK, Smith J, Fox R, Chesser TJS (2013) Investigation of occult hip fractures: the use of CT and MRI. Sci World J 2013:10–13CrossRefGoogle Scholar
  31. 31.
    Heikal S, Riou P, Jones L (2014) The use of computed tomography in identifying radiologically occult hip fractures in the elderly. Ann R Coll Surg Engl 96(3):234–237CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hakkarinen DK, Banh KV, Hendey GW (2012) Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography. J Emerg Med 43(2):303–307CrossRefPubMedGoogle Scholar
  33. 33.
    Haubro M, Stougaard C, Torfing T, Overgaard S (2015) Sensitivity and specificity of CT- and MRI-scanning in evaluation of occult fracture of the proximal femur. Injury 46(8):1557–1561CrossRefPubMedGoogle Scholar
  34. 34.
    Collin D, Geijer M, Göthlin JH (2016) Computed tomography compared to magnetic resonance imaging in occult or suspect hip fractures. A retrospective study in 44 patients. Eur Radiol 26(11):3932–3938CrossRefPubMedGoogle Scholar
  35. 35.
    Sadozai Z, Davies R, Warner J (2016) The sensitivity of CT scans in diagnosing occult femoral neck fractures. Injury 47(12):2769–2771CrossRefPubMedGoogle Scholar
  36. 36.
    Geijer M, Dunker D, Collin D, Göthlin JH (2012) Bone bruise, lipohemarthrosis, and joint effusion in CT of non-displaced hip fracture. Acta Radiol 53(2):197–202CrossRefPubMedGoogle Scholar
  37. 37.
    Sheehan SE, Khurana B, Gaviola G, Davis KW (2014) A biomechanical approach to interpreting magnetic resonance imaging of knee injuries. Magn Reson Imaging Clin N Am 22(4):621–648CrossRefPubMedGoogle Scholar
  38. 38.
    Sahoo K, Garg A, Saha P, Dodia JV, Raj VR, Bhairagond SJ (2016) Study of imaging pattern in bone marrow oedema in MRI in recent knee injuries and its correlation with type of knee injury. J Clin Diagn Res 10(4):TC06–TC11PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mandell JC, Rocha TC, Duran-Mendicuti MA, Miskin NP, Shi J, Khurana B (2018) Color postprocessing of conventional CT images: preliminary results in assessment of nondisplaced proximal femoral fractures. Emerg Radiol 14:1–7Google Scholar
  40. 40.
    Desai MA, Peterson JJ, Garner HW, Kransdorf MJ (2011) Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics 31(5):1365–1375CrossRefPubMedGoogle Scholar
  41. 41.
    Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199(5 Suppl):78–86CrossRefGoogle Scholar

Copyright information

© American Society of Emergency Radiology 2018

Authors and Affiliations

  1. 1.Division of Musculoskeletal Imaging and InterventionBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of Emergency RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations