Advertisement

Emergency Radiology

, Volume 23, Issue 4, pp 365–375 | Cite as

Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options

  • George R. MatcukJrEmail author
  • Scott R. Mahanty
  • Matthew R. Skalski
  • Dakshesh B. Patel
  • Eric A. White
  • Christopher J. Gottsegen
Review Article

Abstract

Stress fracture, in its most inclusive description, includes both fatigue and insufficiency fracture. Fatigue fractures, sometimes equated with the term “stress fractures,” are most common in runners and other athletes and typically occur in the lower extremities. These fractures are the result of abnormal, cyclical loading on normal bone leading to local cortical resorption and fracture. Insufficiency fractures are common in elderly populations, secondary to osteoporosis, and are typically located in and around the pelvis. They are a result of normal or traumatic loading on abnormal bone. Subchondral insufficiency fractures of the hip or knee may cause acute pain that may present in the emergency setting. Medial tibial stress syndrome is a type of stress injury of the tibia related to activity and is a clinical syndrome encompassing a range of injuries from stress edema to frank-displaced fracture. Atypical subtrochanteric femoral fracture associated with long-term bisphosphonate therapy is also a recently discovered entity that needs early recognition to prevent progression to a complete fracture. Imaging recommendations for evaluation of stress fractures include initial plain radiographs followed, if necessary, by magnetic resonance imaging (MRI), which is preferred over computed tomography (CT) and bone scintigraphy. Radiographs are the first-line modality and may reveal linear sclerosis and periosteal reaction prior to the development of a frank fracture. MRI is highly sensitive with findings ranging from periosteal edema to bone marrow and intracortical signal abnormality. Additionally, a brief description of relevant clinical management of stress fractures is included.

Keywords

Stress fracture Fatigue fracture Insufficiency fracture Subchondral insufficiency fracture Medial tibial stress syndrome Bisphosphonate-related atypical subtrochanteric femoral fracture 

Notes

Acknowledgments

We would like to thank Robert W. Henderson, MD for contributing the case of a sacral insufficiency fracture on PET-CT (Fig. 7c). We would also like to honor the memory of Deborah M. Forrester, MD, who was a co-author on the educational exhibit from which this paper derives and served as such an inspirational teacher and mentor to us during her long and brilliant career.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Grants

The authors did not receive any grants.

References

  1. 1.
    Breithaupt M (1855) The pathology of the human foot [in German]. Medizin Zeitung 24:169–175Google Scholar
  2. 2.
    Pepper M, Akuthota V, McCarty EC (2006) The pathophysiology of stress fractures. Clin Sports Med 25(1):1–16. doi: 10.1016/j.csm.2005.08.010, vii CrossRefPubMedGoogle Scholar
  3. 3.
    Rosen CJ, American Society for Bone and Mineral Research (2008) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research, Washington, D.CGoogle Scholar
  4. 4.
    Simon SR, American Academy of Orthopaedic Surgeons (1994) Orthopaedic basic science. American Academy of Orthopaedic Surgeons, Rosemont, IllGoogle Scholar
  5. 5.
    Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech 5(2):173–180CrossRefPubMedGoogle Scholar
  6. 6.
    Daffner RH, Pavlov H (1992) Stress fractures: current concepts. AJR Am J Roentgenol 159(2):245–252. doi: 10.2214/ajr.159.2.1632335 CrossRefPubMedGoogle Scholar
  7. 7.
    Krestan C, Hojreh A (2009) Imaging of insufficiency fractures. Eur J Radiol 71(3):398–405. doi: 10.1016/j.ejrad.2008.04.059 CrossRefPubMedGoogle Scholar
  8. 8.
    Kadel NJ, Teitz CC, Kronmal RA (1992) Stress fractures in ballet dancers. Am J Sports Med 20(4):445–449CrossRefPubMedGoogle Scholar
  9. 9.
    Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 24(2):211–217CrossRefPubMedGoogle Scholar
  10. 10.
    Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD (1996) Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med 24(6):810–818CrossRefPubMedGoogle Scholar
  11. 11.
    Warden SJ, Burr DB, Brukner PD (2006) Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 4(3):103–109CrossRefPubMedGoogle Scholar
  12. 12.
    Rigotti NA, Nussbaum SR, Herzog DB, Neer RM (1984) Osteoporosis in women with anorexia nervosa. N Engl J Med 311(25):1601–1606. doi: 10.1056/NEJM198412203112503 CrossRefPubMedGoogle Scholar
  13. 13.
    Zernicke RF, McNitt-Gray J, Otis C, Loitz B, Salem G, Finerman G (1994) Stress fractures risk assessment among elite collegiate women runners. J Biomech 27(6):854CrossRefGoogle Scholar
  14. 14.
    Rigotti NA, Neer RM, Skates SJ, Herzog DB, Nussbaum SR (1991) The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 265(9):1133–1138CrossRefPubMedGoogle Scholar
  15. 15.
    Winfield AC, Moore J, Bracker M, Johnson CW (1997) Risk factors associated with stress reactions in female Marines. Mil Med 162(10):698–702PubMedGoogle Scholar
  16. 16.
    Barrow GW, Saha S (1988) Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 16(3):209–216CrossRefPubMedGoogle Scholar
  17. 17.
    Nattiv A, Armsey TD Jr (1997) Stress injury to bone in the female athlete. Clin Sports Med 16(2):197–224CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson AW, Weiss CB Jr, Wheeler DL (1994) Stress fractures of the femoral shaft in athletes—more common than expected. A new clinical test. Am J Sports Med 22(2):248–256CrossRefPubMedGoogle Scholar
  19. 19.
    Goldberg B, Pecora C (1994) Stress fractures: a risk of increased training in freshman. Phys Sports Med 22:68–78Google Scholar
  20. 20.
    Bell DG, Jacobs I (1986) Electro-mechanical response times and rate of force development in males and females. Med Sci Sports Exerc 18(1):31–36CrossRefPubMedGoogle Scholar
  21. 21.
    Miller GJ, Purkey WW Jr (1980) The geometric properties of paired human tibiae. J Biomech 13(1):1–8CrossRefPubMedGoogle Scholar
  22. 22.
    Csizy M, Babst R, Fridrich KS (2000) "Bone tumor" diagnostic error in stress fracture of the medial tibial plateau. Unfallchirurg 103(11):993–995CrossRefPubMedGoogle Scholar
  23. 23.
    Wall J, Feller JF (2006) Imaging of stress fractures in runners. Clin Sports Med 25(4):781–802. doi: 10.1016/j.csm.2006.06.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Pećina M, Bojanić I (2004) Overuse injuries of the musculoskeletal system, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Muthukumar T, Butt SH, Cassar-Pullicino VN (2005) Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR Imaging. Semin Musculoskelet Radiol 9(3):210–226. doi: 10.1055/s-2005-921941 CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson MW (2006) Imaging of upper extremity stress fractures in the athlete. Clin Sports Med 25(3):489–504. doi: 10.1016/j.csm.2006.02.006, vii CrossRefPubMedGoogle Scholar
  27. 27.
    Davies AM (1990) Stress lesions of bone. Curr Imaging 2:209–216Google Scholar
  28. 28.
    Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS (2012) Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone 50(3):688–694. doi: 10.1016/j.bone.2011.11.021 CrossRefPubMedGoogle Scholar
  29. 29.
    Syed FA, Hoey KA (2010) Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci 1211:95–106. doi: 10.1111/j.1749-6632.2010.05813.x CrossRefPubMedGoogle Scholar
  30. 30.
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. doi: 10.1016/S0140-6736(10)60320-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Iundusi R, Scialdoni A, Arduini M, Battisti D, Piperno A, Gasbarra E, Tarantino U (2013) Stress fractures in the elderly: different pathogenetic features compared with young patients. Aging Clin Exp Res 25(Suppl 1):S89–S91. doi: 10.1007/s40520-013-0105-y CrossRefPubMedGoogle Scholar
  32. 32.
    Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82(6):858–866PubMedGoogle Scholar
  33. 33.
    Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD (2009) Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br 91(2):190–195. doi: 10.1302/0301-620X.91B2.21097 CrossRefPubMedGoogle Scholar
  34. 34.
    Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4(1):30–34CrossRefPubMedGoogle Scholar
  35. 35.
    Shoemaker LR (1999) Expanding role of bisphosphonate therapy in children. J Pediatr 134(3):264–267CrossRefPubMedGoogle Scholar
  36. 36.
    Lenart BA, Lorich DG, Lane JM (2008) Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 358(12):1304–1306. doi: 10.1056/NEJMc0707493 CrossRefPubMedGoogle Scholar
  37. 37.
    Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MC, Lorich DG, Lane JM (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20(8):1353–1362. doi: 10.1007/s00198-008-0805-x CrossRefPubMedGoogle Scholar
  38. 38.
    Rheinboldt M, Harper D, Stone M (2014) Atypical femoral fractures in association with bisphosphonate therapy: a case series. Emerg Radiol 21(5):557–562. doi: 10.1007/s10140-014-1215-3 CrossRefPubMedGoogle Scholar
  39. 39.
    La Rocca VR, Rosenberg ZS, Allison MB, Im SA, Babb J, Peck V (2012) Frequency of incomplete atypical femoral fractures in asymptomatic patients on long-term bisphosphonate therapy. AJR Am J Roentgenol 198(5):1144–1151. doi: 10.2214/AJR.11.7442 CrossRefGoogle Scholar
  40. 40.
    Allison MB, Markman L, Rosenberg Z, Vieira RL, Babb J, Tejwani N, Peck V (2013) Atypical incomplete femoral fractures in asymptomatic patients on long term bisphosphonate therapy. Bone 55(1):113–118. doi: 10.1016/j.bone.2013.03.018 CrossRefPubMedGoogle Scholar
  41. 41.
    Chan SS, Rosenberg ZS, Chan K, Capeci C (2010) Subtrochanteric femoral fractures in patients receiving long-term alendronate therapy: imaging features. AJR Am J Roentgenol 194(6):1581–1586. doi: 10.2214/AJR.09.3588 CrossRefPubMedGoogle Scholar
  42. 42.
    Berger FH, de Jonge MC, Maas M (2007) Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol 62(1):16–26. doi: 10.1016/j.ejrad.2007.01.014 CrossRefPubMedGoogle Scholar
  43. 43.
    Swischuk LE, Jadhav SP (2014) Tibial stress phenomena and fractures: imaging evaluation. Emerg Radiol 21(2):173–177. doi: 10.1007/s10140-013-1181-1 CrossRefPubMedGoogle Scholar
  44. 44.
    Fredericson M, Bergman AG, Hoffman KL, Dillingham MS (1995) Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23(4):472–481CrossRefPubMedGoogle Scholar
  45. 45.
    Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A (2012) Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol 198(4):878–884. doi: 10.2214/AJR.11.6826 CrossRefPubMedGoogle Scholar
  46. 46.
    Yamamoto T, Bullough PG (2000) Subchondral insufficiency fracture of the femoral head and medial femoral condyle. Skeletal Radiol 29(1):40–44CrossRefPubMedGoogle Scholar
  47. 47.
    Mueller D, Schaeffeler C, Baum T, Walter F, Rechl H, Rummeny EJ, Woertler K (2014) Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur. Eur J Radiol 83(10):1862–1869. doi: 10.1016/j.ejrad.2014.07.017 CrossRefPubMedGoogle Scholar
  48. 48.
    Sofka CM (2006) Imaging of stress fractures. Clin Sports Med 25(1):53–62. doi: 10.1016/j.csm.2005.08.009, viii CrossRefPubMedGoogle Scholar
  49. 49.
    Bennell K, Matheson G, Meeuwisse W, Brukner P (1999) Risk factors for stress fractures. Sports Med 28(2):91–122CrossRefPubMedGoogle Scholar
  50. 50.
    Deutsch AL, Coel MN, Mink JH (1997) Imaging of stress injuries to bone. Radiography, scintigraphy, and MR imaging. Clin Sports Med 16(2):275–290CrossRefPubMedGoogle Scholar
  51. 51.
    Nielens H, Devogelaer JP, Malghem J (1994) Occurrence of a painful stress fracture of the femoral neck simultaneously with six other asymptomatic localizations in a runner. J Sports Med Phys Fitness 34(1):79–82PubMedGoogle Scholar
  52. 52.
    Joshi P, Lele V, Gandhi R, Parab A (2012) Honda sign on 18-FDG PET/CT in a case of lymphoma leading to incidental detection of sacral insufficiency fracture. J Clin Imaging Sci 2:29. doi: 10.4103/2156-7514.96544 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fujii M, Abe K, Hayashi K, Kosuda S, Yano F, Watanabe S, Katagiri S, Ka WJ, Tominaga S (2005) Honda sign and variants in patients suspected of having a sacral insufficiency fracture. Clin Nucl Med 30(3):165–169CrossRefPubMedGoogle Scholar
  54. 54.
    Cabarrus MC, Ambekar A, Lu Y, Link TM (2008) MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 191(4):995–1001. doi: 10.2214/AJR.07.3714 CrossRefPubMedGoogle Scholar
  55. 55.
    Rosenberg ZS, La Rocca VR, Chan SS, Babb J, Akyol Y, Rybak LD, Moore S, Bencardino JT, Peck V, Tejwani NC, Egol KA (2011) Bisphosphonate-related complete atypical subtrochanteric femoral fractures: diagnostic utility of radiography. AJR Am J Roentgenol 197(4):954–960. doi: 10.2214/AJR.10.6262 CrossRefPubMedGoogle Scholar
  56. 56.
    Png MA, Koh JS, Goh SK, Fook-Chong S, Howe TS (2012) Bisphosphonate-related femoral periosteal stress reactions: scoring system based on radiographic and MRI findings. AJR Am J Roentgenol 198(4):869–877. doi: 10.2214/AJR.11.6794 CrossRefPubMedGoogle Scholar
  57. 57.
    Zanetti M, Steiner CL, Seifert B, Hodler J (2002) Clinical outcome of edema-like bone marrow abnormalities of the foot. Radiology 222(1):184–188. doi: 10.1148/radiol.2221010316 CrossRefPubMedGoogle Scholar
  58. 58.
    MacDougall L, Conway WF (1996) Controversies in magnetic resonance imaging of the hip. Top Magn Reson Imaging 8(1):44–50CrossRefPubMedGoogle Scholar
  59. 59.
    Raasch WG, Hergan DJ (2006) Treatment of stress fractures: the fundamentals. Clin Sports Med 25(1):29–36. doi: 10.1016/j.csm.2005.08.013, vii CrossRefPubMedGoogle Scholar
  60. 60.
    Debnath UK, Freeman BJ, Grevitt MP, Sithole J, Scammell BE, Webb JK (2007) Clinical outcome of symptomatic unilateral stress injuries of the lumbar pars interarticularis. Spine (Phila Pa 1976) 32(9):995–1000. doi: 10.1097/01.brs.0000260978.10073.90 CrossRefGoogle Scholar
  61. 61.
    Boden BP, Osbahr DC (2000) High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 8(6):344–353CrossRefPubMedGoogle Scholar
  62. 62.
    Fredericson M, Jennings F, Beaulieu C, Matheson GO (2006) Stress fractures in athletes. Top Magn Reson Imaging 17(5):309–325. doi: 10.1097/RMR.0b013e3180421c8c CrossRefPubMedGoogle Scholar
  63. 63.
    Lyders EM, Whitlow CT, Baker MD, Morris PP (2010) Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 31(2):201–210. doi: 10.3174/ajnr.A1666 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim SR, Ha YC, Park YG, Lee SR, Koo KH (2011) Orthopedic surgeon’s awareness can improve osteoporosis treatment following hip fracture: a prospective cohort study. J Korean Med Sci 26(11):1501–1507. doi: 10.3346/jkms.2011.26.11.1501 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nieves JW, Cosman F (2010) Atypical subtrochanteric and femoral shaft fractures and possible association with bisphosphonates. Curr Osteoporos Rep 8(1):34–39. doi: 10.1007/s11914-010-0007-2 CrossRefPubMedGoogle Scholar
  66. 66.
    Kang JS, Won YY, Kim JO, Min BW, Lee KH, Park KK, Song JH, Kim YT, Kim GH (2014) Atypical femoral fractures after anti-osteoporotic medication: a Korean multicenter study. Int Orthop 38(6):1247–1253. doi: 10.1007/s00264-013-2259-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society of Emergency Radiology 2016

Authors and Affiliations

  1. 1.Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of RadiologyUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of RadiologySouthern California University of Health SciencesWhittierUSA
  4. 4.Department of RadiologyNew York University, Langone Medical CenterNew YorkUSA

Personalised recommendations