Advertisement

High-Throughput Single Nucleotide Polymorphism (SNP) Discovery and Validation Through Whole-Genome Resequencing in Nile Tilapia (Oreochromis niloticus)

  • José M. YáñezEmail author
  • Grazyella Yoshida
  • Agustín Barria
  • Ricardo Palma-Véjares
  • Dante Travisany
  • Diego Díaz
  • Giovanna Cáceres
  • María I. Cádiz
  • María E. López
  • Jean P. Lhorente
  • Ana Jedlicki
  • José Soto
  • Diego Salas
  • Alejandro Maass
Original Article

Abstract

Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype–genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.

Keywords

SNP Oreochromis niloticus Next-generation sequencing Illumina Genomic selection 

Notes

Acknowledgments

We would like to acknowledge the Aqua America and Aquacorporación Internacional for kindly providing the samples used in this work, and Gabriel Rizzato and Natalí Kunita from Aqua America and Diego Salas and José Soto from Aquacorporación International for their contribution of the samples from Brazil and Costa Rica, respectively.

Author Contributions

J.M.Y. conceived of and designed the study, contributed to the analysis, and drafted the manuscript. G.Y. contributed to the analysis and writing. A.B. drafted the first version of the manuscript. G.C., M.E.L., and A.J. participated in the data collection, purification, and management of the samples for sequencing and genotyping. R.P., D.D., D.T., and A.M. assisted with the bioinformatics analysi and contributed to writing. J.P.L. participated in the design of the study and writing. JS and DS contributed to the collection of the samples and managmenent of populations from Costa Rica. All authors have reviewed and approved the manuscript.

Funding Information

This study was partially funded from CORFO grant number 14EIAT-28667 from the Government of Chile. This work was supported by the Basal grant of the Center for Mathematical Modeling AFB170001 (UMI2807 UCHILE-CNRS) and the Center for Genome Regulation Fondap Grant 15090007 Powered@NLHPC. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Compliance with Ethical Standards

Conflict of Interest

Two commercial organizations (Aquainnovo and Illumina) were involved in the SNP identification and preparation of the manuscript. GMY and JPL were employed by Benchmark Genetics Chile during the course of the study.

References

  1. Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM (2017) Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 18:121PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baroiller JF, D’Cotta H (2001) Environment and sex determination in alligators. Comp Biochem Physiol C Toxicol Pharmacol 130:399–409PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barria A, Marín-Nahuelpi R, Cáceres P et al (2019) Single-step genome-wide association study for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss). G3 (Bethesda).  https://doi.org/10.1534/g3.119.400204 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5Google Scholar
  5. Cáceres G, López ME, Cádiz MI et al (2019) Fine mapping using whole-genome sequencing confirms anti-Müllerian hormone as a major gene for sex determination in farmed Nile tilapia (Oreochromis niloticus L.). G3 (Bethesda).  https://doi.org/10.1534/g3.119.400297 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD (2017) A high quality assembly of the Nile tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18:341PubMedPubMedCentralCrossRefGoogle Scholar
  7. Correa K, Lhorente JP, López ME et al (2015) Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes. BMC Genomics 16:854PubMedPubMedCentralCrossRefGoogle Scholar
  8. Correa K, Lhorente JP, Bassini L et al (2016) Genome wide association study for resistance to Caligus rogercresseyi in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. Aquaculture.  https://doi.org/10.1016/j.aquaculture.2016.04.008 CrossRefGoogle Scholar
  9. Correa K, Bangera R, Figueroa R, Lhorente JP, Yáñez JM (2017) The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet Sel Evol 49:15PubMedPubMedCentralCrossRefGoogle Scholar
  10. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158PubMedPubMedCentralCrossRefGoogle Scholar
  11. Gjedrem T, Rye M (2018) Selection response in fish and shellfish: a review. Rev Aquac 10:168–179CrossRefGoogle Scholar
  12. Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD (2016) Genome-wide association study for identifying loci that affect fillet yield, carcass, and body weight traits in rainbow trout (Oncorhynchus mykiss). Front Genet 7:203PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gutierrez AP, Yáñez JM, Fukui S, Swift B, Davidson WS (2015) Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS One 10:e0119730PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gutierrez AP, Yáñez JM, Davidson WS (2016) Evidence of recent signatures of selection during domestication in an Atlantic salmon population. Mar Genomics 26:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  15. Houston RD, Haley CS, Hamilton A et al (2008) Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). 1115:1109–1115Google Scholar
  16. Houston RD, Taggart JB, Cézard T et al (2014) Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15:90PubMedPubMedCentralCrossRefGoogle Scholar
  17. Joshi R, Árnyasi M, Lien S et al (2018) Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus). Front Genet 9:472PubMedPubMedCentralCrossRefGoogle Scholar
  18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  20. Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z (2018) Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Gen Genomics 293:587–599CrossRefGoogle Scholar
  21. Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205PubMedCrossRefPubMedCentralGoogle Scholar
  22. Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z (2014) Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes 7:135PubMedPubMedCentralCrossRefGoogle Scholar
  23. Liu Z, Liu S, Yao J et al (2016) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7Google Scholar
  24. López ME, Benestan L, Moore J, Perrier C, Gilbey J, di Genova A, Maass A, Diaz D, Lhorente JP, Correa K, Neira R, Bernatchez L, Yáñez JM (2019a) Comparing genomic signatures of domestication in two Atlantic salmon (Salmo salar L.) populations with different geographical origins. Evol Appl 12:137–156PubMedCrossRefPubMedCentralGoogle Scholar
  25. Lopez MED, Linderoth T, Norris A et al (2019b) Multiple selection signatures in farmed Atlantic salmon adapted to different environments across Hemispheres. Front Genet 10:901PubMedPubMedCentralCrossRefGoogle Scholar
  26. Moen T, Baranski M, Sonesson AK, Kjøglum S (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10:368PubMedPubMedCentralCrossRefGoogle Scholar
  27. Neira R (2010) Breeding in aquaculture species: genetic improvement programs in developing countries. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, vol 8. Leipzig, GermanyGoogle Scholar
  28. Neira R, García X, Lhorente JP et al (2016) Evaluation of the growth and carcass quality of diallel crosses of four strains of Nile tilapia (Oerochromis niloticus). Aquaculture 451:213–222CrossRefGoogle Scholar
  29. Norris A (2017) Application of genomics in salmon aquaculture breeding programs by Ashie Norris: who knows where the genomic revolution will lead us? Mar Genomics 36:13–15PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ødegård J, Moen T, Santi N et al (2014) Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front Genet 5:1–8Google Scholar
  31. Palaiokostas C, Ferarreso S, Franch R, et al (2016) Genomic prediction of resistance to pasteurellosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. G3 (Bethesda) X:1–8Google Scholar
  32. Palti Y, Gao G, Liu S et al (2015) The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour 15:662–672PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ponzoni RW, Nguyen NH, Khaw HL et al (2011) Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev Aquac 3:27–41CrossRefGoogle Scholar
  34. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedPubMedCentralCrossRefGoogle Scholar
  35. Reis Neto RV, Yoshida GM, Lhorente JP, Yáñez JM (2019) Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 294:563–571PubMedCrossRefPubMedCentralGoogle Scholar
  36. Rodríguez FH, Flores-Mara R, Yoshida GM et al (2019) Genome-wide association analysis for resistance to infectious pancreatic necrosis virus identifies candidate genes involved in viral replication and immune response in rainbow trout (Oncorhynchus mykiss). G3 (Bethesda).  https://doi.org/10.1534/g3.119.400463 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Sae-Lim P, Kause A, Lillehammer M, Mulder HA (2017) Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation. Genet Sel Evol 49:33PubMedPubMedCentralCrossRefGoogle Scholar
  38. Tsai HY, Hamilton A, Tinch AE et al (2015) Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16:1–9CrossRefGoogle Scholar
  39. Vallejo RL, Leeds TD, Fragomeni BO et al (2016) Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models. Front Genet 7:1–13CrossRefGoogle Scholar
  40. Vallejo R, Liu S, Gao G et al (2017) Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations. Front Genet 8:1–15CrossRefGoogle Scholar
  41. Vallejo RL, Silva RMO, Evenhuis JP et al (2018) Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing factor. J Anim Breed Genet 135:263–274CrossRefGoogle Scholar
  42. Webster C, Lim C (2006) Tilapia: biology, culture, and nutritionGoogle Scholar
  43. Yáñez JM, Martinez V (2010) Genetic factors involved in resistance to infectious diseases in salmonids and their application in breeding programmes. Arch Med Vet 42:1–13CrossRefGoogle Scholar
  44. Yáñez JM, Houston RD, Newman S (2014) Genetics and genomics of disease resistance in salmonid species. Front Genet 5:1–13Google Scholar
  45. Yáñez JM, Newman S, Houston RD (2015) Genomics in aquaculture to better understand species biology and accelerate genetic progress. Front Genet 6:1–3Google Scholar
  46. Yañez JM, Naswa S, Lopez ME et al (2016) Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour 16:1002–1011PubMedCrossRefPubMedCentralGoogle Scholar
  47. Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN, Christensen KA, López ME, Carvalheiro R, Lhorente JP, Pulgar R (2019) Comparative genomic analysis of three salmonid species identifies functional candidate genes involved in resistance to the intracellular bacterium Piscirickettsia salmonis. Front Genet 10:665PubMedPubMedCentralCrossRefGoogle Scholar
  48. Yoshida GM, Lhorente JP, Carvalheiro R, Yáñez JM (2017) Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Anim Genet 48:698–703PubMedCrossRefPubMedCentralGoogle Scholar
  49. Yoshida G, Bangera R, Carvalheiro R et al (2018a) Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 (Bethesda) 8:719–726CrossRefGoogle Scholar
  50. Yoshida G, Carvalheiro R, Rodríguez FH, Lhorente JP (2018b) Genomics single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 111:127–132PubMedCrossRefPubMedCentralGoogle Scholar
  51. Yoshida GM, Barria A, Cáceres G et al (2019a) Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). Front Genet 10:745PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yoshida GM, Lhorente JP, Correa K et al (2019b) Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus). G3 (Bethesda) 9Google Scholar
  53. Zeng Q, Fu Q, Li Y et al (2017) Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence. Sci Rep 7:1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • José M. Yáñez
    • 1
    • 2
    Email author
  • Grazyella Yoshida
    • 1
    • 3
  • Agustín Barria
    • 1
    • 4
  • Ricardo Palma-Véjares
    • 5
    • 6
  • Dante Travisany
    • 5
    • 6
  • Diego Díaz
    • 5
    • 6
  • Giovanna Cáceres
    • 1
  • María I. Cádiz
    • 1
  • María E. López
    • 1
    • 7
  • Jean P. Lhorente
    • 3
  • Ana Jedlicki
    • 1
  • José Soto
    • 8
  • Diego Salas
    • 8
  • Alejandro Maass
    • 5
    • 6
  1. 1.Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
  2. 2.Núcleo Milenio INVASALConcepciónChile
  3. 3.Benchmark Genetics ChilePuerto MonttChile
  4. 4.The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEaster Bush, MidlothianUK
  5. 5.Centro para la Regulación del GenomaUniversidad de ChileSantiagoChile
  6. 6.Centro de Modelamiento Matemático UMI CNRS 2807Universidad de ChileSantiagoChile
  7. 7.Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  8. 8.Grupo Acuacorporacion, Internacional (GACI)CañasCosta Rica

Personalised recommendations